Extensions 1→N→G→Q→1 with N=Dic3×A4 and Q=C2

Direct product G=N×Q with N=Dic3×A4 and Q=C2
dρLabelID
C2×Dic3×A472C2xDic3xA4288,927

Semidirect products G=N:Q with N=Dic3×A4 and Q=C2
extensionφ:Q→Out NdρLabelID
(Dic3×A4)⋊1C2 = Dic3⋊S4φ: C2/C1C2 ⊆ Out Dic3×A4366(Dic3xA4):1C2288,855
(Dic3×A4)⋊2C2 = Dic3×S4φ: C2/C1C2 ⊆ Out Dic3×A4366-(Dic3xA4):2C2288,853
(Dic3×A4)⋊3C2 = Dic32S4φ: C2/C1C2 ⊆ Out Dic3×A4366(Dic3xA4):3C2288,854
(Dic3×A4)⋊4C2 = A4×C3⋊D4φ: C2/C1C2 ⊆ Out Dic3×A4366(Dic3xA4):4C2288,928
(Dic3×A4)⋊5C2 = C4×S3×A4φ: trivial image366(Dic3xA4):5C2288,919

Non-split extensions G=N.Q with N=Dic3×A4 and Q=C2
extensionφ:Q→Out NdρLabelID
(Dic3×A4).1C2 = Dic3.S4φ: C2/C1C2 ⊆ Out Dic3×A4726-(Dic3xA4).1C2288,852
(Dic3×A4).2C2 = A4×Dic6φ: C2/C1C2 ⊆ Out Dic3×A4726-(Dic3xA4).2C2288,918

׿
×
𝔽