Extensions 1→N→G→Q→1 with N=C3×C3⋊D4 and Q=C4

Direct product G=N×Q with N=C3×C3⋊D4 and Q=C4
dρLabelID
C12×C3⋊D448C12xC3:D4288,699

Semidirect products G=N:Q with N=C3×C3⋊D4 and Q=C4
extensionφ:Q→Out NdρLabelID
(C3×C3⋊D4)⋊1C4 = Dic3×C3⋊D4φ: C4/C2C2 ⊆ Out C3×C3⋊D448(C3xC3:D4):1C4288,620
(C3×C3⋊D4)⋊2C4 = C62.115C23φ: C4/C2C2 ⊆ Out C3×C3⋊D448(C3xC3:D4):2C4288,621
(C3×C3⋊D4)⋊3C4 = C3×Dic34D4φ: C4/C2C2 ⊆ Out C3×C3⋊D448(C3xC3:D4):3C4288,652

Non-split extensions G=N.Q with N=C3×C3⋊D4 and Q=C4
extensionφ:Q→Out NdρLabelID
(C3×C3⋊D4).1C4 = D12.2Dic3φ: C4/C2C2 ⊆ Out C3×C3⋊D4484(C3xC3:D4).1C4288,462
(C3×C3⋊D4).2C4 = D12.Dic3φ: C4/C2C2 ⊆ Out C3×C3⋊D4484(C3xC3:D4).2C4288,463
(C3×C3⋊D4).3C4 = C3×D12.C4φ: C4/C2C2 ⊆ Out C3×C3⋊D4484(C3xC3:D4).3C4288,678
(C3×C3⋊D4).4C4 = C3×C8○D12φ: trivial image482(C3xC3:D4).4C4288,672

׿
×
𝔽