Extensions 1→N→G→Q→1 with N=C4×A4 and Q=S3

Direct product G=N×Q with N=C4×A4 and Q=S3
dρLabelID
C4×S3×A4366C4xS3xA4288,919

Semidirect products G=N:Q with N=C4×A4 and Q=S3
extensionφ:Q→Out NdρLabelID
(C4×A4)⋊1S3 = C12⋊S4φ: S3/C3C2 ⊆ Out C4×A4366+(C4xA4):1S3288,909
(C4×A4)⋊2S3 = C4×C3⋊S4φ: S3/C3C2 ⊆ Out C4×A4366(C4xA4):2S3288,908
(C4×A4)⋊3S3 = A4×D12φ: S3/C3C2 ⊆ Out C4×A4366+(C4xA4):3S3288,920

Non-split extensions G=N.Q with N=C4×A4 and Q=S3
extensionφ:Q→Out NdρLabelID
(C4×A4).1S3 = A4⋊Dic6φ: S3/C3C2 ⊆ Out C4×A4726-(C4xA4).1S3288,907
(C4×A4).2S3 = C12.12S4φ: S3/C3C2 ⊆ Out C4×A4726(C4xA4).2S3288,402
(C4×A4).3S3 = A4×Dic6φ: S3/C3C2 ⊆ Out C4×A4726-(C4xA4).3S3288,918
(C4×A4).4S3 = A4×C3⋊C8φ: trivial image726(C4xA4).4S3288,408

׿
×
𝔽