Extensions 1→N→G→Q→1 with N=C2 and Q=S3×Dic6

Direct product G=N×Q with N=C2 and Q=S3×Dic6
dρLabelID
C2×S3×Dic696C2xS3xDic6288,942


Non-split extensions G=N.Q with N=C2 and Q=S3×Dic6
extensionφ:Q→Aut NdρLabelID
C2.1(S3×Dic6) = Dic35Dic6central extension (φ=1)96C2.1(S3xDic6)288,485
C2.2(S3×Dic6) = Dic3×Dic6central extension (φ=1)96C2.2(S3xDic6)288,490
C2.3(S3×Dic6) = Dic36Dic6central extension (φ=1)96C2.3(S3xDic6)288,492
C2.4(S3×Dic6) = S3×Dic3⋊C4central extension (φ=1)96C2.4(S3xDic6)288,524
C2.5(S3×Dic6) = S3×C4⋊Dic3central extension (φ=1)96C2.5(S3xDic6)288,537
C2.6(S3×Dic6) = C62.9C23central stem extension (φ=1)96C2.6(S3xDic6)288,487
C2.7(S3×Dic6) = C62.10C23central stem extension (φ=1)96C2.7(S3xDic6)288,488
C2.8(S3×Dic6) = Dic3.Dic6central stem extension (φ=1)96C2.8(S3xDic6)288,493
C2.9(S3×Dic6) = C62.16C23central stem extension (φ=1)96C2.9(S3xDic6)288,494
C2.10(S3×Dic6) = D6⋊Dic6central stem extension (φ=1)96C2.10(S3xDic6)288,499
C2.11(S3×Dic6) = D66Dic6central stem extension (φ=1)96C2.11(S3xDic6)288,504
C2.12(S3×Dic6) = D67Dic6central stem extension (φ=1)96C2.12(S3xDic6)288,505
C2.13(S3×Dic6) = Dic3⋊Dic6central stem extension (φ=1)96C2.13(S3xDic6)288,514
C2.14(S3×Dic6) = C62.37C23central stem extension (φ=1)96C2.14(S3xDic6)288,515
C2.15(S3×Dic6) = D61Dic6central stem extension (φ=1)96C2.15(S3xDic6)288,535
C2.16(S3×Dic6) = D62Dic6central stem extension (φ=1)96C2.16(S3xDic6)288,541
C2.17(S3×Dic6) = D63Dic6central stem extension (φ=1)96C2.17(S3xDic6)288,544
C2.18(S3×Dic6) = D64Dic6central stem extension (φ=1)96C2.18(S3xDic6)288,547
C2.19(S3×Dic6) = C123Dic6central stem extension (φ=1)96C2.19(S3xDic6)288,566

׿
×
𝔽