Extensions 1→N→G→Q→1 with N=C3 and Q=C2×D4⋊S3

Direct product G=N×Q with N=C3 and Q=C2×D4⋊S3
dρLabelID
C6×D4⋊S348C6xD4:S3288,702

Semidirect products G=N:Q with N=C3 and Q=C2×D4⋊S3
extensionφ:Q→Aut NdρLabelID
C31(C2×D4⋊S3) = C2×C3⋊D24φ: C2×D4⋊S3/C2×C3⋊C8C2 ⊆ Aut C348C3:1(C2xD4:S3)288,472
C32(C2×D4⋊S3) = S3×D4⋊S3φ: C2×D4⋊S3/D4⋊S3C2 ⊆ Aut C3488+C3:2(C2xD4:S3)288,572
C33(C2×D4⋊S3) = C2×C322D8φ: C2×D4⋊S3/C2×D12C2 ⊆ Aut C396C3:3(C2xD4:S3)288,469
C34(C2×D4⋊S3) = C2×C327D8φ: C2×D4⋊S3/C6×D4C2 ⊆ Aut C3144C3:4(C2xD4:S3)288,788

Non-split extensions G=N.Q with N=C3 and Q=C2×D4⋊S3
extensionφ:Q→Aut NdρLabelID
C3.(C2×D4⋊S3) = C2×D4⋊D9φ: C2×D4⋊S3/C6×D4C2 ⊆ Aut C3144C3.(C2xD4:S3)288,142

׿
×
𝔽