Copied to
clipboard

G = C2xD4:S3order 96 = 25·3

Direct product of C2 and D4:S3

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2xD4:S3, C6:2D8, D4:3D6, C12.14D4, D12:5C22, C12.11C23, C3:3(C2xD8), (C6xD4):1C2, (C2xD4):1S3, C3:C8:7C22, (C2xD12):8C2, C6.44(C2xD4), (C2xC6).38D4, (C2xC4).47D6, (C3xD4):3C22, C4.5(C3:D4), C4.11(C22xS3), (C2xC12).29C22, C22.21(C3:D4), (C2xC3:C8):4C2, C2.8(C2xC3:D4), SmallGroup(96,138)

Series: Derived Chief Lower central Upper central

C1C12 — C2xD4:S3
C1C3C6C12D12C2xD12 — C2xD4:S3
C3C6C12 — C2xD4:S3
C1C22C2xC4C2xD4

Generators and relations for C2xD4:S3
 G = < a,b,c,d,e | a2=b4=c2=d3=e2=1, ab=ba, ac=ca, ad=da, ae=ea, cbc=ebe=b-1, bd=db, cd=dc, ece=bc, ede=d-1 >

Subgroups: 210 in 76 conjugacy classes, 33 normal (17 characteristic)
C1, C2, C2, C2, C3, C4, C22, C22, S3, C6, C6, C6, C8, C2xC4, D4, D4, C23, C12, D6, C2xC6, C2xC6, C2xC8, D8, C2xD4, C2xD4, C3:C8, D12, D12, C2xC12, C3xD4, C3xD4, C22xS3, C22xC6, C2xD8, C2xC3:C8, D4:S3, C2xD12, C6xD4, C2xD4:S3
Quotients: C1, C2, C22, S3, D4, C23, D6, D8, C2xD4, C3:D4, C22xS3, C2xD8, D4:S3, C2xC3:D4, C2xD4:S3

Character table of C2xD4:S3

 class 12A2B2C2D2E2F2G34A4B6A6B6C6D6E6F6G8A8B8C8D12A12B
 size 11114412122222224444666644
ρ1111111111111111111111111    trivial
ρ21111-1-1-1-1111111-1-1-1-1111111    linear of order 2
ρ31-1-11-111-11-11-11-1-1-111-111-11-1    linear of order 2
ρ41-1-111-1-111-11-11-111-1-1-111-11-1    linear of order 2
ρ5111111-1-11111111111-1-1-1-111    linear of order 2
ρ61111-1-111111111-1-1-1-1-1-1-1-111    linear of order 2
ρ71-1-11-11-111-11-11-1-1-1111-1-111-1    linear of order 2
ρ81-1-111-11-11-11-11-111-1-11-1-111-1    linear of order 2
ρ92-2-222-200-1-221-11-1-1110000-11    orthogonal lifted from D6
ρ1022222200-122-1-1-1-1-1-1-10000-1-1    orthogonal lifted from S3
ρ112-2-22-2200-1-221-1111-1-10000-11    orthogonal lifted from D6
ρ122-2-22000022-2-22-200000000-22    orthogonal lifted from D4
ρ13222200002-2-222200000000-2-2    orthogonal lifted from D4
ρ142222-2-200-122-1-1-111110000-1-1    orthogonal lifted from D6
ρ152-22-200002002-2-200002-22-200    orthogonal lifted from D8
ρ1622-2-20000200-2-22000022-2-200    orthogonal lifted from D8
ρ1722-2-20000200-2-220000-2-22200    orthogonal lifted from D8
ρ182-22-200002002-2-20000-22-2200    orthogonal lifted from D8
ρ1922220000-1-2-2-1-1-1--3-3--3-3000011    complex lifted from C3:D4
ρ2022220000-1-2-2-1-1-1-3--3-3--3000011    complex lifted from C3:D4
ρ212-2-220000-12-21-11--3-3-3--300001-1    complex lifted from C3:D4
ρ222-2-220000-12-21-11-3--3--3-300001-1    complex lifted from C3:D4
ρ2344-4-40000-20022-20000000000    orthogonal lifted from D4:S3, Schur index 2
ρ244-44-40000-200-2220000000000    orthogonal lifted from D4:S3, Schur index 2

Smallest permutation representation of C2xD4:S3
On 48 points
Generators in S48
(1 34)(2 35)(3 36)(4 33)(5 25)(6 26)(7 27)(8 28)(9 29)(10 30)(11 31)(12 32)(13 37)(14 38)(15 39)(16 40)(17 41)(18 42)(19 43)(20 44)(21 45)(22 46)(23 47)(24 48)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)
(1 45)(2 48)(3 47)(4 46)(5 19)(6 18)(7 17)(8 20)(9 15)(10 14)(11 13)(12 16)(21 34)(22 33)(23 36)(24 35)(25 43)(26 42)(27 41)(28 44)(29 39)(30 38)(31 37)(32 40)
(1 14 19)(2 15 20)(3 16 17)(4 13 18)(5 45 10)(6 46 11)(7 47 12)(8 48 9)(21 30 25)(22 31 26)(23 32 27)(24 29 28)(33 37 42)(34 38 43)(35 39 44)(36 40 41)
(1 34)(2 33)(3 36)(4 35)(5 29)(6 32)(7 31)(8 30)(9 25)(10 28)(11 27)(12 26)(13 44)(14 43)(15 42)(16 41)(17 40)(18 39)(19 38)(20 37)(21 48)(22 47)(23 46)(24 45)

G:=sub<Sym(48)| (1,34)(2,35)(3,36)(4,33)(5,25)(6,26)(7,27)(8,28)(9,29)(10,30)(11,31)(12,32)(13,37)(14,38)(15,39)(16,40)(17,41)(18,42)(19,43)(20,44)(21,45)(22,46)(23,47)(24,48), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (1,45)(2,48)(3,47)(4,46)(5,19)(6,18)(7,17)(8,20)(9,15)(10,14)(11,13)(12,16)(21,34)(22,33)(23,36)(24,35)(25,43)(26,42)(27,41)(28,44)(29,39)(30,38)(31,37)(32,40), (1,14,19)(2,15,20)(3,16,17)(4,13,18)(5,45,10)(6,46,11)(7,47,12)(8,48,9)(21,30,25)(22,31,26)(23,32,27)(24,29,28)(33,37,42)(34,38,43)(35,39,44)(36,40,41), (1,34)(2,33)(3,36)(4,35)(5,29)(6,32)(7,31)(8,30)(9,25)(10,28)(11,27)(12,26)(13,44)(14,43)(15,42)(16,41)(17,40)(18,39)(19,38)(20,37)(21,48)(22,47)(23,46)(24,45)>;

G:=Group( (1,34)(2,35)(3,36)(4,33)(5,25)(6,26)(7,27)(8,28)(9,29)(10,30)(11,31)(12,32)(13,37)(14,38)(15,39)(16,40)(17,41)(18,42)(19,43)(20,44)(21,45)(22,46)(23,47)(24,48), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (1,45)(2,48)(3,47)(4,46)(5,19)(6,18)(7,17)(8,20)(9,15)(10,14)(11,13)(12,16)(21,34)(22,33)(23,36)(24,35)(25,43)(26,42)(27,41)(28,44)(29,39)(30,38)(31,37)(32,40), (1,14,19)(2,15,20)(3,16,17)(4,13,18)(5,45,10)(6,46,11)(7,47,12)(8,48,9)(21,30,25)(22,31,26)(23,32,27)(24,29,28)(33,37,42)(34,38,43)(35,39,44)(36,40,41), (1,34)(2,33)(3,36)(4,35)(5,29)(6,32)(7,31)(8,30)(9,25)(10,28)(11,27)(12,26)(13,44)(14,43)(15,42)(16,41)(17,40)(18,39)(19,38)(20,37)(21,48)(22,47)(23,46)(24,45) );

G=PermutationGroup([[(1,34),(2,35),(3,36),(4,33),(5,25),(6,26),(7,27),(8,28),(9,29),(10,30),(11,31),(12,32),(13,37),(14,38),(15,39),(16,40),(17,41),(18,42),(19,43),(20,44),(21,45),(22,46),(23,47),(24,48)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48)], [(1,45),(2,48),(3,47),(4,46),(5,19),(6,18),(7,17),(8,20),(9,15),(10,14),(11,13),(12,16),(21,34),(22,33),(23,36),(24,35),(25,43),(26,42),(27,41),(28,44),(29,39),(30,38),(31,37),(32,40)], [(1,14,19),(2,15,20),(3,16,17),(4,13,18),(5,45,10),(6,46,11),(7,47,12),(8,48,9),(21,30,25),(22,31,26),(23,32,27),(24,29,28),(33,37,42),(34,38,43),(35,39,44),(36,40,41)], [(1,34),(2,33),(3,36),(4,35),(5,29),(6,32),(7,31),(8,30),(9,25),(10,28),(11,27),(12,26),(13,44),(14,43),(15,42),(16,41),(17,40),(18,39),(19,38),(20,37),(21,48),(22,47),(23,46),(24,45)]])

C2xD4:S3 is a maximal subgroup of
D12.3D4  Dic3:4D8  D4:D12  D6:D8  D4:3D12  C3:C8:D4  D4:S3:C4  D12:3D4  D12.D4  C42.48D6  C12:7D8  D4.1D12  D12:16D4  D12:17D4  C3:C8:22D4  C4:D4:S3  D12.23D4  C42.64D6  C42.214D6  C12:2D8  C12:D8  C42.74D6  Dic3:D8  C24:5D4  C24:11D4  D12:D4  (C3xD4).D4  C24.43D4  D12:7D4  C24:9D4  M4(2).D6  (C2xC6):8D8  (C3xD4):14D4  C2xS3xD8  D8:5D6  D12.32C23
C2xD4:S3 is a maximal quotient of
(C2xC6).40D8  C12.50D8  C12:7D8  (C2xC6).D8  D12:16D4  C3:C8:22D4  C12.16D8  C12:2D8  C12:D8  C12.17D8  D12:6Q8  C12.D8  D8.D6  C24.27C23  Q16:D6  Q16.D6  D8.9D6  (C2xC6):8D8

Matrix representation of C2xD4:S3 in GL4(F73) generated by

72000
07200
0010
0001
,
1000
0100
0001
00720
,
1000
0100
005716
001616
,
72100
72000
0010
0001
,
07200
72000
0010
00072
G:=sub<GL(4,GF(73))| [72,0,0,0,0,72,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,1,0,0,0,0,0,72,0,0,1,0],[1,0,0,0,0,1,0,0,0,0,57,16,0,0,16,16],[72,72,0,0,1,0,0,0,0,0,1,0,0,0,0,1],[0,72,0,0,72,0,0,0,0,0,1,0,0,0,0,72] >;

C2xD4:S3 in GAP, Magma, Sage, TeX

C_2\times D_4\rtimes S_3
% in TeX

G:=Group("C2xD4:S3");
// GroupNames label

G:=SmallGroup(96,138);
// by ID

G=gap.SmallGroup(96,138);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-3,218,579,159,69,2309]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^4=c^2=d^3=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=e*b*e=b^-1,b*d=d*b,c*d=d*c,e*c*e=b*c,e*d*e=d^-1>;
// generators/relations

Export

Character table of C2xD4:S3 in TeX

׿
x
:
Z
F
o
wr
Q
<