Extensions 1→N→G→Q→1 with N=C2 and Q=D12⋊S3

Direct product G=N×Q with N=C2 and Q=D12⋊S3
dρLabelID
C2×D12⋊S348C2xD12:S3288,944


Non-split extensions G=N.Q with N=C2 and Q=D12⋊S3
extensionφ:Q→Aut NdρLabelID
C2.1(D12⋊S3) = C62.13C23central extension (φ=1)96C2.1(D12:S3)288,491
C2.2(D12⋊S3) = C62.19C23central extension (φ=1)48C2.2(D12:S3)288,497
C2.3(D12⋊S3) = C62.48C23central extension (φ=1)96C2.3(D12:S3)288,526
C2.4(D12⋊S3) = C62.51C23central extension (φ=1)48C2.4(D12:S3)288,529
C2.5(D12⋊S3) = D12⋊Dic3central extension (φ=1)96C2.5(D12:S3)288,546
C2.6(D12⋊S3) = C62.16C23central stem extension (φ=1)96C2.6(D12:S3)288,494
C2.7(D12⋊S3) = C62.18C23central stem extension (φ=1)48C2.7(D12:S3)288,496
C2.8(D12⋊S3) = C62.23C23central stem extension (φ=1)48C2.8(D12:S3)288,501
C2.9(D12⋊S3) = C62.28C23central stem extension (φ=1)96C2.9(D12:S3)288,506
C2.10(D12⋊S3) = C62.32C23central stem extension (φ=1)96C2.10(D12:S3)288,510
C2.11(D12⋊S3) = C62.33C23central stem extension (φ=1)96C2.11(D12:S3)288,511
C2.12(D12⋊S3) = C12.30D12central stem extension (φ=1)48C2.12(D12:S3)288,519
C2.13(D12⋊S3) = C62.42C23central stem extension (φ=1)96C2.13(D12:S3)288,520
C2.14(D12⋊S3) = C62.54C23central stem extension (φ=1)96C2.14(D12:S3)288,532
C2.15(D12⋊S3) = Dic3⋊D12central stem extension (φ=1)48C2.15(D12:S3)288,534
C2.16(D12⋊S3) = D61Dic6central stem extension (φ=1)96C2.16(D12:S3)288,535
C2.17(D12⋊S3) = D6.D12central stem extension (φ=1)48C2.17(D12:S3)288,538
C2.18(D12⋊S3) = C62.77C23central stem extension (φ=1)48C2.18(D12:S3)288,555
C2.19(D12⋊S3) = C122D12central stem extension (φ=1)48C2.19(D12:S3)288,564

׿
×
𝔽