metabelian, supersoluble, monomial
Aliases: D12⋊3S3, D6.2D6, Dic6⋊3S3, C12.22D6, Dic3.1D6, C4.11S32, (C3×D12)⋊5C2, C3⋊D12⋊3C2, (C3×Dic6)⋊5C2, (S3×Dic3)⋊1C2, C32⋊2(C4○D4), (C3×C6).3C23, C6.3(C22×S3), C3⋊1(D4⋊2S3), C3⋊2(Q8⋊3S3), (S3×C6).2C22, (C3×C12).18C22, C3⋊Dic3.11C22, (C3×Dic3).2C22, C2.6(C2×S32), (C4×C3⋊S3)⋊1C2, (C2×C3⋊S3).11C22, SmallGroup(144,139)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D12⋊S3
G = < a,b,c,d | a12=b2=c3=d2=1, bab=a-1, ac=ca, dad=a5, bc=cb, dbd=a10b, dcd=c-1 >
Subgroups: 288 in 88 conjugacy classes, 32 normal (20 characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, S3, C6, C6, C2×C4, D4, Q8, C32, Dic3, Dic3, C12, C12, D6, D6, C2×C6, C4○D4, C3×S3, C3⋊S3, C3×C6, Dic6, C4×S3, D12, D12, C2×Dic3, C3⋊D4, C3×D4, C3×Q8, C3×Dic3, C3⋊Dic3, C3×C12, S3×C6, C2×C3⋊S3, D4⋊2S3, Q8⋊3S3, S3×Dic3, C3⋊D12, C3×Dic6, C3×D12, C4×C3⋊S3, D12⋊S3
Quotients: C1, C2, C22, S3, C23, D6, C4○D4, C22×S3, S32, D4⋊2S3, Q8⋊3S3, C2×S32, D12⋊S3
Character table of D12⋊S3
class | 1 | 2A | 2B | 2C | 2D | 3A | 3B | 3C | 4A | 4B | 4C | 4D | 4E | 6A | 6B | 6C | 6D | 6E | 12A | 12B | 12C | 12D | 12E | 12F | |
size | 1 | 1 | 6 | 6 | 18 | 2 | 2 | 4 | 2 | 6 | 6 | 9 | 9 | 2 | 2 | 4 | 12 | 12 | 4 | 4 | 4 | 4 | 12 | 12 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ9 | 2 | 2 | 0 | 0 | 0 | -1 | 2 | -1 | -2 | -2 | 2 | 0 | 0 | -1 | 2 | -1 | 0 | 0 | 1 | -2 | 1 | 1 | -1 | 1 | orthogonal lifted from D6 |
ρ10 | 2 | 2 | 0 | 0 | 0 | -1 | 2 | -1 | 2 | -2 | -2 | 0 | 0 | -1 | 2 | -1 | 0 | 0 | -1 | 2 | -1 | -1 | 1 | 1 | orthogonal lifted from D6 |
ρ11 | 2 | 2 | 2 | 2 | 0 | 2 | -1 | -1 | 2 | 0 | 0 | 0 | 0 | 2 | -1 | -1 | -1 | -1 | 2 | -1 | -1 | -1 | 0 | 0 | orthogonal lifted from S3 |
ρ12 | 2 | 2 | -2 | -2 | 0 | 2 | -1 | -1 | 2 | 0 | 0 | 0 | 0 | 2 | -1 | -1 | 1 | 1 | 2 | -1 | -1 | -1 | 0 | 0 | orthogonal lifted from D6 |
ρ13 | 2 | 2 | -2 | 2 | 0 | 2 | -1 | -1 | -2 | 0 | 0 | 0 | 0 | 2 | -1 | -1 | 1 | -1 | -2 | 1 | 1 | 1 | 0 | 0 | orthogonal lifted from D6 |
ρ14 | 2 | 2 | 0 | 0 | 0 | -1 | 2 | -1 | 2 | 2 | 2 | 0 | 0 | -1 | 2 | -1 | 0 | 0 | -1 | 2 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ15 | 2 | 2 | 0 | 0 | 0 | -1 | 2 | -1 | -2 | 2 | -2 | 0 | 0 | -1 | 2 | -1 | 0 | 0 | 1 | -2 | 1 | 1 | 1 | -1 | orthogonal lifted from D6 |
ρ16 | 2 | 2 | 2 | -2 | 0 | 2 | -1 | -1 | -2 | 0 | 0 | 0 | 0 | 2 | -1 | -1 | -1 | 1 | -2 | 1 | 1 | 1 | 0 | 0 | orthogonal lifted from D6 |
ρ17 | 2 | -2 | 0 | 0 | 0 | 2 | 2 | 2 | 0 | 0 | 0 | -2i | 2i | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ18 | 2 | -2 | 0 | 0 | 0 | 2 | 2 | 2 | 0 | 0 | 0 | 2i | -2i | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ19 | 4 | 4 | 0 | 0 | 0 | -2 | -2 | 1 | -4 | 0 | 0 | 0 | 0 | -2 | -2 | 1 | 0 | 0 | 2 | 2 | -1 | -1 | 0 | 0 | orthogonal lifted from C2×S32 |
ρ20 | 4 | -4 | 0 | 0 | 0 | -2 | 4 | -2 | 0 | 0 | 0 | 0 | 0 | 2 | -4 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from Q8⋊3S3, Schur index 2 |
ρ21 | 4 | 4 | 0 | 0 | 0 | -2 | -2 | 1 | 4 | 0 | 0 | 0 | 0 | -2 | -2 | 1 | 0 | 0 | -2 | -2 | 1 | 1 | 0 | 0 | orthogonal lifted from S32 |
ρ22 | 4 | -4 | 0 | 0 | 0 | 4 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | -4 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from D4⋊2S3, Schur index 2 |
ρ23 | 4 | -4 | 0 | 0 | 0 | -2 | -2 | 1 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | -1 | 0 | 0 | 0 | 0 | 3i | -3i | 0 | 0 | complex faithful |
ρ24 | 4 | -4 | 0 | 0 | 0 | -2 | -2 | 1 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | -1 | 0 | 0 | 0 | 0 | -3i | 3i | 0 | 0 | complex faithful |
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)
(1 15)(2 14)(3 13)(4 24)(5 23)(6 22)(7 21)(8 20)(9 19)(10 18)(11 17)(12 16)
(1 9 5)(2 10 6)(3 11 7)(4 12 8)(13 17 21)(14 18 22)(15 19 23)(16 20 24)
(2 6)(3 11)(5 9)(8 12)(13 19)(14 24)(15 17)(16 22)(18 20)(21 23)
G:=sub<Sym(24)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24), (1,15)(2,14)(3,13)(4,24)(5,23)(6,22)(7,21)(8,20)(9,19)(10,18)(11,17)(12,16), (1,9,5)(2,10,6)(3,11,7)(4,12,8)(13,17,21)(14,18,22)(15,19,23)(16,20,24), (2,6)(3,11)(5,9)(8,12)(13,19)(14,24)(15,17)(16,22)(18,20)(21,23)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24), (1,15)(2,14)(3,13)(4,24)(5,23)(6,22)(7,21)(8,20)(9,19)(10,18)(11,17)(12,16), (1,9,5)(2,10,6)(3,11,7)(4,12,8)(13,17,21)(14,18,22)(15,19,23)(16,20,24), (2,6)(3,11)(5,9)(8,12)(13,19)(14,24)(15,17)(16,22)(18,20)(21,23) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24)], [(1,15),(2,14),(3,13),(4,24),(5,23),(6,22),(7,21),(8,20),(9,19),(10,18),(11,17),(12,16)], [(1,9,5),(2,10,6),(3,11,7),(4,12,8),(13,17,21),(14,18,22),(15,19,23),(16,20,24)], [(2,6),(3,11),(5,9),(8,12),(13,19),(14,24),(15,17),(16,22),(18,20),(21,23)]])
G:=TransitiveGroup(24,227);
D12⋊S3 is a maximal subgroup of
C24⋊6D6 D12.2D6 D24⋊5S3 D12.4D6 D12.8D6 D12⋊5D6 D12.14D6 D12.15D6 D12.33D6 D12⋊23D6 D12⋊24D6 S3×D4⋊2S3 D12⋊13D6 D12.25D6 S3×Q8⋊3S3 D18.D6 D12⋊D9 C12⋊S3⋊S3 C12.S32 D6.3S32 D6.6S32 D12⋊(C3⋊S3) C12.39S32 C12⋊S3⋊12S3
D12⋊S3 is a maximal quotient of
C62.13C23 C62.16C23 C62.18C23 C62.19C23 C62.23C23 C62.28C23 C62.32C23 C62.33C23 C12.30D12 C62.42C23 C62.48C23 C62.51C23 C62.54C23 Dic3⋊D12 D6⋊1Dic6 D6.D12 D12⋊Dic3 C62.77C23 C12⋊2D12 D18.D6 D12⋊D9 C12.84S32 D6.3S32 D6.6S32 D12⋊(C3⋊S3) C12.39S32 C12⋊S3⋊12S3
Matrix representation of D12⋊S3 ►in GL4(𝔽5) generated by
0 | 3 | 4 | 1 |
1 | 0 | 0 | 4 |
2 | 4 | 4 | 4 |
3 | 4 | 0 | 1 |
4 | 4 | 1 | 2 |
0 | 1 | 3 | 1 |
4 | 2 | 4 | 1 |
3 | 4 | 0 | 1 |
3 | 4 | 3 | 0 |
0 | 0 | 1 | 4 |
4 | 3 | 3 | 3 |
4 | 4 | 4 | 2 |
1 | 0 | 2 | 0 |
0 | 0 | 4 | 1 |
0 | 0 | 4 | 0 |
0 | 1 | 4 | 0 |
G:=sub<GL(4,GF(5))| [0,1,2,3,3,0,4,4,4,0,4,0,1,4,4,1],[4,0,4,3,4,1,2,4,1,3,4,0,2,1,1,1],[3,0,4,4,4,0,3,4,3,1,3,4,0,4,3,2],[1,0,0,0,0,0,0,1,2,4,4,4,0,1,0,0] >;
D12⋊S3 in GAP, Magma, Sage, TeX
D_{12}\rtimes S_3
% in TeX
G:=Group("D12:S3");
// GroupNames label
G:=SmallGroup(144,139);
// by ID
G=gap.SmallGroup(144,139);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-3,-3,55,218,116,50,490,3461]);
// Polycyclic
G:=Group<a,b,c,d|a^12=b^2=c^3=d^2=1,b*a*b=a^-1,a*c=c*a,d*a*d=a^5,b*c=c*b,d*b*d=a^10*b,d*c*d=c^-1>;
// generators/relations
Export