Extensions 1→N→G→Q→1 with N=C2 and Q=Dic3.D6

Direct product G=N×Q with N=C2 and Q=Dic3.D6
dρLabelID
C2×Dic3.D648C2xDic3.D6288,947


Non-split extensions G=N.Q with N=C2 and Q=Dic3.D6
extensionφ:Q→Aut NdρLabelID
C2.1(Dic3.D6) = C62.8C23central extension (φ=1)96C2.1(Dic3.D6)288,486
C2.2(Dic3.D6) = C62.13C23central extension (φ=1)96C2.2(Dic3.D6)288,491
C2.3(Dic3.D6) = C62.53C23central extension (φ=1)48C2.3(Dic3.D6)288,531
C2.4(Dic3.D6) = C62.70C23central extension (φ=1)48C2.4(Dic3.D6)288,548
C2.5(Dic3.D6) = C62.9C23central stem extension (φ=1)96C2.5(Dic3.D6)288,487
C2.6(Dic3.D6) = C62.17C23central stem extension (φ=1)96C2.6(Dic3.D6)288,495
C2.7(Dic3.D6) = C62.35C23central stem extension (φ=1)48C2.7(Dic3.D6)288,513
C2.8(Dic3.D6) = C62.40C23central stem extension (φ=1)96C2.8(Dic3.D6)288,518
C2.9(Dic3.D6) = C12.30D12central stem extension (φ=1)48C2.9(Dic3.D6)288,519
C2.10(Dic3.D6) = C62.43C23central stem extension (φ=1)96C2.10(Dic3.D6)288,521
C2.11(Dic3.D6) = C62.58C23central stem extension (φ=1)48C2.11(Dic3.D6)288,536
C2.12(Dic3.D6) = C62.65C23central stem extension (φ=1)48C2.12(Dic3.D6)288,543
C2.13(Dic3.D6) = C12⋊Dic6central stem extension (φ=1)96C2.13(Dic3.D6)288,567

׿
×
𝔽