metabelian, supersoluble, monomial
Aliases: Dic6⋊4S3, C12.23D6, Dic3.2D6, C4.12S32, C3⋊S3⋊2Q8, C3⋊1(S3×Q8), C32⋊3(C2×Q8), (C3×Dic6)⋊6C2, C32⋊2Q8⋊3C2, (C3×C6).4C23, C6.4(C22×S3), C6.D6.1C2, (C3×C12).19C22, C3⋊Dic3.12C22, (C3×Dic3).3C22, C2.7(C2×S32), (C4×C3⋊S3).1C2, (C2×C3⋊S3).12C22, SmallGroup(144,140)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for Dic3.D6
G = < a,b,c,d | a6=1, b2=c6=d2=a3, bab-1=a-1, ac=ca, ad=da, cbc-1=dbd-1=a3b, dcd-1=a3c5 >
Subgroups: 256 in 84 conjugacy classes, 34 normal (10 characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, S3, C6, C6, C2×C4, Q8, C32, Dic3, Dic3, C12, C12, D6, C2×Q8, C3⋊S3, C3×C6, Dic6, Dic6, C4×S3, C3×Q8, C3×Dic3, C3⋊Dic3, C3×C12, C2×C3⋊S3, S3×Q8, C6.D6, C32⋊2Q8, C3×Dic6, C4×C3⋊S3, Dic3.D6
Quotients: C1, C2, C22, S3, Q8, C23, D6, C2×Q8, C22×S3, S32, S3×Q8, C2×S32, Dic3.D6
Character table of Dic3.D6
class | 1 | 2A | 2B | 2C | 3A | 3B | 3C | 4A | 4B | 4C | 4D | 4E | 4F | 6A | 6B | 6C | 12A | 12B | 12C | 12D | 12E | 12F | 12G | 12H | |
size | 1 | 1 | 9 | 9 | 2 | 2 | 4 | 2 | 6 | 6 | 6 | 6 | 18 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 12 | 12 | 12 | 12 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ9 | 2 | 2 | 0 | 0 | 2 | -1 | -1 | -2 | -2 | 2 | 0 | 0 | 0 | -1 | 2 | -1 | 1 | 1 | 1 | -2 | -1 | 0 | 1 | 0 | orthogonal lifted from D6 |
ρ10 | 2 | 2 | 0 | 0 | -1 | 2 | -1 | 2 | 0 | 0 | 2 | 2 | 0 | 2 | -1 | -1 | -1 | 2 | -1 | -1 | 0 | -1 | 0 | -1 | orthogonal lifted from S3 |
ρ11 | 2 | 2 | 0 | 0 | 2 | -1 | -1 | -2 | 2 | -2 | 0 | 0 | 0 | -1 | 2 | -1 | 1 | 1 | 1 | -2 | 1 | 0 | -1 | 0 | orthogonal lifted from D6 |
ρ12 | 2 | 2 | 0 | 0 | 2 | -1 | -1 | 2 | -2 | -2 | 0 | 0 | 0 | -1 | 2 | -1 | -1 | -1 | -1 | 2 | 1 | 0 | 1 | 0 | orthogonal lifted from D6 |
ρ13 | 2 | 2 | 0 | 0 | -1 | 2 | -1 | -2 | 0 | 0 | -2 | 2 | 0 | 2 | -1 | -1 | 1 | -2 | 1 | 1 | 0 | -1 | 0 | 1 | orthogonal lifted from D6 |
ρ14 | 2 | 2 | 0 | 0 | -1 | 2 | -1 | 2 | 0 | 0 | -2 | -2 | 0 | 2 | -1 | -1 | -1 | 2 | -1 | -1 | 0 | 1 | 0 | 1 | orthogonal lifted from D6 |
ρ15 | 2 | 2 | 0 | 0 | -1 | 2 | -1 | -2 | 0 | 0 | 2 | -2 | 0 | 2 | -1 | -1 | 1 | -2 | 1 | 1 | 0 | 1 | 0 | -1 | orthogonal lifted from D6 |
ρ16 | 2 | 2 | 0 | 0 | 2 | -1 | -1 | 2 | 2 | 2 | 0 | 0 | 0 | -1 | 2 | -1 | -1 | -1 | -1 | 2 | -1 | 0 | -1 | 0 | orthogonal lifted from S3 |
ρ17 | 2 | -2 | 2 | -2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
ρ18 | 2 | -2 | -2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
ρ19 | 4 | 4 | 0 | 0 | -2 | -2 | 1 | -4 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | 1 | -1 | 2 | -1 | 2 | 0 | 0 | 0 | 0 | orthogonal lifted from C2×S32 |
ρ20 | 4 | 4 | 0 | 0 | -2 | -2 | 1 | 4 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | 1 | 1 | -2 | 1 | -2 | 0 | 0 | 0 | 0 | orthogonal lifted from S32 |
ρ21 | 4 | -4 | 0 | 0 | -2 | 4 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -4 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from S3×Q8, Schur index 2 |
ρ22 | 4 | -4 | 0 | 0 | 4 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -4 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from S3×Q8, Schur index 2 |
ρ23 | 4 | -4 | 0 | 0 | -2 | -2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | -1 | 3i | 0 | -3i | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ24 | 4 | -4 | 0 | 0 | -2 | -2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | -1 | -3i | 0 | 3i | 0 | 0 | 0 | 0 | 0 | complex faithful |
(1 11 9 7 5 3)(2 12 10 8 6 4)(13 15 17 19 21 23)(14 16 18 20 22 24)
(1 22 7 16)(2 17 8 23)(3 24 9 18)(4 19 10 13)(5 14 11 20)(6 21 12 15)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)
(1 21 7 15)(2 20 8 14)(3 19 9 13)(4 18 10 24)(5 17 11 23)(6 16 12 22)
G:=sub<Sym(24)| (1,11,9,7,5,3)(2,12,10,8,6,4)(13,15,17,19,21,23)(14,16,18,20,22,24), (1,22,7,16)(2,17,8,23)(3,24,9,18)(4,19,10,13)(5,14,11,20)(6,21,12,15), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24), (1,21,7,15)(2,20,8,14)(3,19,9,13)(4,18,10,24)(5,17,11,23)(6,16,12,22)>;
G:=Group( (1,11,9,7,5,3)(2,12,10,8,6,4)(13,15,17,19,21,23)(14,16,18,20,22,24), (1,22,7,16)(2,17,8,23)(3,24,9,18)(4,19,10,13)(5,14,11,20)(6,21,12,15), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24), (1,21,7,15)(2,20,8,14)(3,19,9,13)(4,18,10,24)(5,17,11,23)(6,16,12,22) );
G=PermutationGroup([[(1,11,9,7,5,3),(2,12,10,8,6,4),(13,15,17,19,21,23),(14,16,18,20,22,24)], [(1,22,7,16),(2,17,8,23),(3,24,9,18),(4,19,10,13),(5,14,11,20),(6,21,12,15)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24)], [(1,21,7,15),(2,20,8,14),(3,19,9,13),(4,18,10,24),(5,17,11,23),(6,16,12,22)]])
G:=TransitiveGroup(24,223);
Dic3.D6 is a maximal subgroup of
(C3×C12).D4 C3⋊S3.2Q16 C24⋊9D6 C24.23D6 D12.4D6 Dic6⋊D6 Dic6.D6 Dic6.9D6 Dic6.10D6 S32⋊Q8 C4.4S3≀C2 C32⋊C4⋊Q8 C32⋊Q16⋊C2 C3⋊S3⋊2SD16 C3⋊S3⋊Q16 D12.33D6 D12⋊23D6 Dic6.24D6 Dic6⋊12D6 Dic6.26D6 S32×Q8 Dic18⋊S3 C3⋊S3⋊Dic6 C33⋊5(C2×Q8) C33⋊6(C2×Q8) C32⋊9(S3×Q8) C3⋊S3⋊4Dic6
Dic3.D6 is a maximal quotient of
C62.8C23 C62.9C23 C62.13C23 C62.17C23 C62.35C23 C62.40C23 C12.30D12 C62.43C23 C62.53C23 C62.58C23 C62.65C23 C62.70C23 C12⋊Dic6 Dic18⋊S3 C12.85S32 C33⋊5(C2×Q8) C33⋊6(C2×Q8) C32⋊9(S3×Q8) C3⋊S3⋊4Dic6
Matrix representation of Dic3.D6 ►in GL4(𝔽5) generated by
0 | 0 | 0 | 4 |
0 | 0 | 2 | 0 |
0 | 2 | 1 | 0 |
1 | 0 | 0 | 1 |
0 | 0 | 3 | 0 |
0 | 0 | 0 | 4 |
3 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 0 | 3 |
0 | 3 | 4 | 0 |
0 | 4 | 0 | 0 |
2 | 0 | 0 | 2 |
0 | 0 | 4 | 0 |
2 | 0 | 0 | 2 |
1 | 0 | 0 | 0 |
0 | 2 | 1 | 0 |
G:=sub<GL(4,GF(5))| [0,0,0,1,0,0,2,0,0,2,1,0,4,0,0,1],[0,0,3,0,0,0,0,1,3,0,0,0,0,4,0,0],[0,0,0,2,0,3,4,0,0,4,0,0,3,0,0,2],[0,2,1,0,0,0,0,2,4,0,0,1,0,2,0,0] >;
Dic3.D6 in GAP, Magma, Sage, TeX
{\rm Dic}_3.D_6
% in TeX
G:=Group("Dic3.D6");
// GroupNames label
G:=SmallGroup(144,140);
// by ID
G=gap.SmallGroup(144,140);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-3,-3,48,55,218,116,50,490,3461]);
// Polycyclic
G:=Group<a,b,c,d|a^6=1,b^2=c^6=d^2=a^3,b*a*b^-1=a^-1,a*c=c*a,a*d=d*a,c*b*c^-1=d*b*d^-1=a^3*b,d*c*d^-1=a^3*c^5>;
// generators/relations
Export