Copied to
clipboard

G = C12⋊Dic6order 288 = 25·32

1st semidirect product of C12 and Dic6 acting via Dic6/C6=C22

metabelian, supersoluble, monomial

Aliases: C121Dic6, C62.89C23, (C3×C12)⋊4Q8, C33(C12⋊Q8), C3⋊Dic37Q8, C6.44(S3×D4), C328(C4⋊Q8), C6.13(S3×Q8), (C2×C12).143D6, C42(C322Q8), C4⋊Dic3.13S3, C3⋊Dic3.45D4, C6.23(C2×Dic6), (C2×Dic3).37D6, C2.19(D6⋊D6), (C6×C12).111C22, C62.C22.6C2, (C6×Dic3).21C22, C2.13(Dic3.D6), (C2×C4).121S32, (C3×C6).60(C2×D4), (C3×C6).35(C2×Q8), C22.126(C2×S32), (C4×C3⋊Dic3).4C2, C2.7(C2×C322Q8), (C3×C4⋊Dic3).17C2, (C2×C322Q8).4C2, (C2×C6).108(C22×S3), (C2×C3⋊Dic3).141C22, SmallGroup(288,567)

Series: Derived Chief Lower central Upper central

C1C62 — C12⋊Dic6
C1C3C32C3×C6C62C6×Dic3C2×C322Q8 — C12⋊Dic6
C32C62 — C12⋊Dic6
C1C22C2×C4

Generators and relations for C12⋊Dic6
 G = < a,b,c | a12=b12=1, c2=b6, bab-1=a-1, cac-1=a7, cbc-1=b-1 >

Subgroups: 522 in 151 conjugacy classes, 56 normal (16 characteristic)
C1, C2, C3, C3, C4, C4, C22, C6, C6, C2×C4, C2×C4, Q8, C32, Dic3, C12, C12, C2×C6, C2×C6, C42, C4⋊C4, C2×Q8, C3×C6, Dic6, C2×Dic3, C2×Dic3, C2×C12, C2×C12, C4⋊Q8, C3×Dic3, C3⋊Dic3, C3×C12, C62, C4×Dic3, Dic3⋊C4, C4⋊Dic3, C3×C4⋊C4, C2×Dic6, C322Q8, C6×Dic3, C2×C3⋊Dic3, C6×C12, C12⋊Q8, C62.C22, C3×C4⋊Dic3, C4×C3⋊Dic3, C2×C322Q8, C12⋊Dic6
Quotients: C1, C2, C22, S3, D4, Q8, C23, D6, C2×D4, C2×Q8, Dic6, C22×S3, C4⋊Q8, S32, C2×Dic6, S3×D4, S3×Q8, C322Q8, C2×S32, C12⋊Q8, Dic3.D6, D6⋊D6, C2×C322Q8, C12⋊Dic6

Smallest permutation representation of C12⋊Dic6
On 96 points
Generators in S96
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)
(1 91 46 21 9 95 42 13 5 87 38 17)(2 90 47 20 10 94 43 24 6 86 39 16)(3 89 48 19 11 93 44 23 7 85 40 15)(4 88 37 18 12 92 45 22 8 96 41 14)(25 50 80 72 33 54 76 64 29 58 84 68)(26 49 81 71 34 53 77 63 30 57 73 67)(27 60 82 70 35 52 78 62 31 56 74 66)(28 59 83 69 36 51 79 61 32 55 75 65)
(1 69 42 55)(2 64 43 50)(3 71 44 57)(4 66 45 52)(5 61 46 59)(6 68 47 54)(7 63 48 49)(8 70 37 56)(9 65 38 51)(10 72 39 58)(11 67 40 53)(12 62 41 60)(13 32 91 83)(14 27 92 78)(15 34 93 73)(16 29 94 80)(17 36 95 75)(18 31 96 82)(19 26 85 77)(20 33 86 84)(21 28 87 79)(22 35 88 74)(23 30 89 81)(24 25 90 76)

G:=sub<Sym(96)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,91,46,21,9,95,42,13,5,87,38,17)(2,90,47,20,10,94,43,24,6,86,39,16)(3,89,48,19,11,93,44,23,7,85,40,15)(4,88,37,18,12,92,45,22,8,96,41,14)(25,50,80,72,33,54,76,64,29,58,84,68)(26,49,81,71,34,53,77,63,30,57,73,67)(27,60,82,70,35,52,78,62,31,56,74,66)(28,59,83,69,36,51,79,61,32,55,75,65), (1,69,42,55)(2,64,43,50)(3,71,44,57)(4,66,45,52)(5,61,46,59)(6,68,47,54)(7,63,48,49)(8,70,37,56)(9,65,38,51)(10,72,39,58)(11,67,40,53)(12,62,41,60)(13,32,91,83)(14,27,92,78)(15,34,93,73)(16,29,94,80)(17,36,95,75)(18,31,96,82)(19,26,85,77)(20,33,86,84)(21,28,87,79)(22,35,88,74)(23,30,89,81)(24,25,90,76)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,91,46,21,9,95,42,13,5,87,38,17)(2,90,47,20,10,94,43,24,6,86,39,16)(3,89,48,19,11,93,44,23,7,85,40,15)(4,88,37,18,12,92,45,22,8,96,41,14)(25,50,80,72,33,54,76,64,29,58,84,68)(26,49,81,71,34,53,77,63,30,57,73,67)(27,60,82,70,35,52,78,62,31,56,74,66)(28,59,83,69,36,51,79,61,32,55,75,65), (1,69,42,55)(2,64,43,50)(3,71,44,57)(4,66,45,52)(5,61,46,59)(6,68,47,54)(7,63,48,49)(8,70,37,56)(9,65,38,51)(10,72,39,58)(11,67,40,53)(12,62,41,60)(13,32,91,83)(14,27,92,78)(15,34,93,73)(16,29,94,80)(17,36,95,75)(18,31,96,82)(19,26,85,77)(20,33,86,84)(21,28,87,79)(22,35,88,74)(23,30,89,81)(24,25,90,76) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96)], [(1,91,46,21,9,95,42,13,5,87,38,17),(2,90,47,20,10,94,43,24,6,86,39,16),(3,89,48,19,11,93,44,23,7,85,40,15),(4,88,37,18,12,92,45,22,8,96,41,14),(25,50,80,72,33,54,76,64,29,58,84,68),(26,49,81,71,34,53,77,63,30,57,73,67),(27,60,82,70,35,52,78,62,31,56,74,66),(28,59,83,69,36,51,79,61,32,55,75,65)], [(1,69,42,55),(2,64,43,50),(3,71,44,57),(4,66,45,52),(5,61,46,59),(6,68,47,54),(7,63,48,49),(8,70,37,56),(9,65,38,51),(10,72,39,58),(11,67,40,53),(12,62,41,60),(13,32,91,83),(14,27,92,78),(15,34,93,73),(16,29,94,80),(17,36,95,75),(18,31,96,82),(19,26,85,77),(20,33,86,84),(21,28,87,79),(22,35,88,74),(23,30,89,81),(24,25,90,76)]])

42 conjugacy classes

class 1 2A2B2C3A3B3C4A4B4C4D4E4F4G4H4I4J6A···6F6G6H6I12A···12H12I···12P
order122233344444444446···666612···1212···12
size11112242212121212181818182···24444···412···12

42 irreducible representations

dim1111122222224444444
type+++++++--++-++--+
imageC1C2C2C2C2S3D4Q8Q8D6D6Dic6S32S3×D4S3×Q8C322Q8C2×S32Dic3.D6D6⋊D6
kernelC12⋊Dic6C62.C22C3×C4⋊Dic3C4×C3⋊Dic3C2×C322Q8C4⋊Dic3C3⋊Dic3C3⋊Dic3C3×C12C2×Dic3C2×C12C12C2×C4C6C6C4C22C2C2
# reps1221222224281222122

Matrix representation of C12⋊Dic6 in GL6(𝔽13)

860000
050000
00121200
001000
000010
000001
,
250000
12110000
0012000
001100
0000610
000033
,
1020000
830000
0012000
0001200
000008
000080

G:=sub<GL(6,GF(13))| [8,0,0,0,0,0,6,5,0,0,0,0,0,0,12,1,0,0,0,0,12,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[2,12,0,0,0,0,5,11,0,0,0,0,0,0,12,1,0,0,0,0,0,1,0,0,0,0,0,0,6,3,0,0,0,0,10,3],[10,8,0,0,0,0,2,3,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,0,8,0,0,0,0,8,0] >;

C12⋊Dic6 in GAP, Magma, Sage, TeX

C_{12}\rtimes {\rm Dic}_6
% in TeX

G:=Group("C12:Dic6");
// GroupNames label

G:=SmallGroup(288,567);
// by ID

G=gap.SmallGroup(288,567);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,56,141,64,422,219,100,1356,9414]);
// Polycyclic

G:=Group<a,b,c|a^12=b^12=1,c^2=b^6,b*a*b^-1=a^-1,c*a*c^-1=a^7,c*b*c^-1=b^-1>;
// generators/relations

׿
×
𝔽