Extensions 1→N→G→Q→1 with N=C2×C3⋊D4 and Q=S3

Direct product G=N×Q with N=C2×C3⋊D4 and Q=S3
dρLabelID
C2×S3×C3⋊D448C2xS3xC3:D4288,976

Semidirect products G=N:Q with N=C2×C3⋊D4 and Q=S3
extensionφ:Q→Out NdρLabelID
(C2×C3⋊D4)⋊1S3 = C62.100C23φ: S3/C3C2 ⊆ Out C2×C3⋊D448(C2xC3:D4):1S3288,606
(C2×C3⋊D4)⋊2S3 = C62.112C23φ: S3/C3C2 ⊆ Out C2×C3⋊D448(C2xC3:D4):2S3288,618
(C2×C3⋊D4)⋊3S3 = C62.113C23φ: S3/C3C2 ⊆ Out C2×C3⋊D448(C2xC3:D4):3S3288,619
(C2×C3⋊D4)⋊4S3 = C624D4φ: S3/C3C2 ⊆ Out C2×C3⋊D448(C2xC3:D4):4S3288,624
(C2×C3⋊D4)⋊5S3 = C626D4φ: S3/C3C2 ⊆ Out C2×C3⋊D448(C2xC3:D4):5S3288,626
(C2×C3⋊D4)⋊6S3 = C62.121C23φ: S3/C3C2 ⊆ Out C2×C3⋊D448(C2xC3:D4):6S3288,627
(C2×C3⋊D4)⋊7S3 = C627D4φ: S3/C3C2 ⊆ Out C2×C3⋊D448(C2xC3:D4):7S3288,628
(C2×C3⋊D4)⋊8S3 = C628D4φ: S3/C3C2 ⊆ Out C2×C3⋊D424(C2xC3:D4):8S3288,629
(C2×C3⋊D4)⋊9S3 = C62.125C23φ: S3/C3C2 ⊆ Out C2×C3⋊D448(C2xC3:D4):9S3288,631
(C2×C3⋊D4)⋊10S3 = C2×D6.4D6φ: S3/C3C2 ⊆ Out C2×C3⋊D448(C2xC3:D4):10S3288,971
(C2×C3⋊D4)⋊11S3 = C2×Dic3⋊D6φ: S3/C3C2 ⊆ Out C2×C3⋊D424(C2xC3:D4):11S3288,977
(C2×C3⋊D4)⋊12S3 = C32⋊2+ 1+4φ: S3/C3C2 ⊆ Out C2×C3⋊D4244(C2xC3:D4):12S3288,978
(C2×C3⋊D4)⋊13S3 = C2×D6.3D6φ: trivial image48(C2xC3:D4):13S3288,970

Non-split extensions G=N.Q with N=C2×C3⋊D4 and Q=S3
extensionφ:Q→Out NdρLabelID
(C2×C3⋊D4).1S3 = C62.31D4φ: S3/C3C2 ⊆ Out C2×C3⋊D4244(C2xC3:D4).1S3288,228
(C2×C3⋊D4).2S3 = C62.101C23φ: S3/C3C2 ⊆ Out C2×C3⋊D448(C2xC3:D4).2S3288,607
(C2×C3⋊D4).3S3 = C62.56D4φ: S3/C3C2 ⊆ Out C2×C3⋊D448(C2xC3:D4).3S3288,609
(C2×C3⋊D4).4S3 = C62.57D4φ: S3/C3C2 ⊆ Out C2×C3⋊D448(C2xC3:D4).4S3288,610
(C2×C3⋊D4).5S3 = C62.111C23φ: S3/C3C2 ⊆ Out C2×C3⋊D448(C2xC3:D4).5S3288,617
(C2×C3⋊D4).6S3 = C62.115C23φ: S3/C3C2 ⊆ Out C2×C3⋊D448(C2xC3:D4).6S3288,621
(C2×C3⋊D4).7S3 = Dic3×C3⋊D4φ: trivial image48(C2xC3:D4).7S3288,620

׿
×
𝔽