Extensions 1→N→G→Q→1 with N=C2xC3:D4 and Q=S3

Direct product G=NxQ with N=C2xC3:D4 and Q=S3
dρLabelID
C2xS3xC3:D448C2xS3xC3:D4288,976

Semidirect products G=N:Q with N=C2xC3:D4 and Q=S3
extensionφ:Q→Out NdρLabelID
(C2xC3:D4):1S3 = C62.100C23φ: S3/C3C2 ⊆ Out C2xC3:D448(C2xC3:D4):1S3288,606
(C2xC3:D4):2S3 = C62.112C23φ: S3/C3C2 ⊆ Out C2xC3:D448(C2xC3:D4):2S3288,618
(C2xC3:D4):3S3 = C62.113C23φ: S3/C3C2 ⊆ Out C2xC3:D448(C2xC3:D4):3S3288,619
(C2xC3:D4):4S3 = C62:4D4φ: S3/C3C2 ⊆ Out C2xC3:D448(C2xC3:D4):4S3288,624
(C2xC3:D4):5S3 = C62:6D4φ: S3/C3C2 ⊆ Out C2xC3:D448(C2xC3:D4):5S3288,626
(C2xC3:D4):6S3 = C62.121C23φ: S3/C3C2 ⊆ Out C2xC3:D448(C2xC3:D4):6S3288,627
(C2xC3:D4):7S3 = C62:7D4φ: S3/C3C2 ⊆ Out C2xC3:D448(C2xC3:D4):7S3288,628
(C2xC3:D4):8S3 = C62:8D4φ: S3/C3C2 ⊆ Out C2xC3:D424(C2xC3:D4):8S3288,629
(C2xC3:D4):9S3 = C62.125C23φ: S3/C3C2 ⊆ Out C2xC3:D448(C2xC3:D4):9S3288,631
(C2xC3:D4):10S3 = C2xD6.4D6φ: S3/C3C2 ⊆ Out C2xC3:D448(C2xC3:D4):10S3288,971
(C2xC3:D4):11S3 = C2xDic3:D6φ: S3/C3C2 ⊆ Out C2xC3:D424(C2xC3:D4):11S3288,977
(C2xC3:D4):12S3 = C32:2+ 1+4φ: S3/C3C2 ⊆ Out C2xC3:D4244(C2xC3:D4):12S3288,978
(C2xC3:D4):13S3 = C2xD6.3D6φ: trivial image48(C2xC3:D4):13S3288,970

Non-split extensions G=N.Q with N=C2xC3:D4 and Q=S3
extensionφ:Q→Out NdρLabelID
(C2xC3:D4).1S3 = C62.31D4φ: S3/C3C2 ⊆ Out C2xC3:D4244(C2xC3:D4).1S3288,228
(C2xC3:D4).2S3 = C62.101C23φ: S3/C3C2 ⊆ Out C2xC3:D448(C2xC3:D4).2S3288,607
(C2xC3:D4).3S3 = C62.56D4φ: S3/C3C2 ⊆ Out C2xC3:D448(C2xC3:D4).3S3288,609
(C2xC3:D4).4S3 = C62.57D4φ: S3/C3C2 ⊆ Out C2xC3:D448(C2xC3:D4).4S3288,610
(C2xC3:D4).5S3 = C62.111C23φ: S3/C3C2 ⊆ Out C2xC3:D448(C2xC3:D4).5S3288,617
(C2xC3:D4).6S3 = C62.115C23φ: S3/C3C2 ⊆ Out C2xC3:D448(C2xC3:D4).6S3288,621
(C2xC3:D4).7S3 = Dic3xC3:D4φ: trivial image48(C2xC3:D4).7S3288,620

׿
x
:
Z
F
o
wr
Q
<