direct product, metabelian, supersoluble, monomial, rational
Aliases: C2xDic3:D6, C62:3C23, C23:5S32, C6:3(S3xD4), C3:D4:9D6, (C22xC6):8D6, (S3xC6):5C23, D6:4(C22xS3), C32:8(C22xD4), (C2xDic3):16D6, (C22xS3):13D6, C6.36(S3xC23), (C3xC6).36C24, (C2xC62):7C22, (C6xDic3):9C22, (C3xDic3):3C23, Dic3:3(C22xS3), C3:D12:18C22, C6.D6:12C22, C3:4(C2xS3xD4), C3:S3:4(C2xD4), C22:4(C2xS32), (C3xC6):7(C2xD4), (C2xC3:S3):18D4, (C22xS32):9C2, (C6xC3:D4):7C2, (C2xS32):12C22, (C2xC3:D4):11S3, (C23xC3:S3):5C2, (C2xC3:S3):5C23, (S3xC2xC6):12C22, (C2xC6):5(C22xS3), C2.36(C22xS32), (C2xC6.D6):6C2, (C2xC3:D12):22C2, (C3xC3:D4):13C22, (C22xC3:S3):14C22, SmallGroup(288,977)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C2xDic3:D6
G = < a,b,c,d,e | a2=b6=d6=e2=1, c2=b3, ab=ba, ac=ca, ad=da, ae=ea, cbc-1=ebe=b-1, bd=db, dcd-1=b3c, ce=ec, ede=d-1 >
Subgroups: 2370 in 539 conjugacy classes, 124 normal (14 characteristic)
C1, C2, C2, C2, C3, C3, C4, C22, C22, C22, S3, C6, C6, C2xC4, D4, C23, C23, C32, Dic3, C12, D6, D6, C2xC6, C2xC6, C22xC4, C2xD4, C24, C3xS3, C3:S3, C3:S3, C3xC6, C3xC6, C3xC6, C4xS3, D12, C2xDic3, C3:D4, C3:D4, C2xC12, C3xD4, C22xS3, C22xS3, C22xC6, C22xC6, C22xD4, C3xDic3, S32, S3xC6, S3xC6, C2xC3:S3, C2xC3:S3, C62, C62, C62, S3xC2xC4, C2xD12, S3xD4, C2xC3:D4, C2xC3:D4, C6xD4, S3xC23, C6.D6, C3:D12, C6xDic3, C3xC3:D4, C2xS32, C2xS32, S3xC2xC6, C22xC3:S3, C22xC3:S3, C22xC3:S3, C2xC62, C2xS3xD4, C2xC6.D6, C2xC3:D12, Dic3:D6, C6xC3:D4, C22xS32, C23xC3:S3, C2xDic3:D6
Quotients: C1, C2, C22, S3, D4, C23, D6, C2xD4, C24, C22xS3, C22xD4, S32, S3xD4, S3xC23, C2xS32, C2xS3xD4, Dic3:D6, C22xS32, C2xDic3:D6
(1 11)(2 12)(3 7)(4 8)(5 9)(6 10)(13 19)(14 20)(15 21)(16 22)(17 23)(18 24)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)
(1 22 4 19)(2 21 5 24)(3 20 6 23)(7 14 10 17)(8 13 11 16)(9 18 12 15)
(1 7 5 11 3 9)(2 8 6 12 4 10)(13 20 15 22 17 24)(14 21 16 23 18 19)
(1 5)(2 4)(8 12)(9 11)(13 15)(16 18)(19 21)(22 24)
G:=sub<Sym(24)| (1,11)(2,12)(3,7)(4,8)(5,9)(6,10)(13,19)(14,20)(15,21)(16,22)(17,23)(18,24), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24), (1,22,4,19)(2,21,5,24)(3,20,6,23)(7,14,10,17)(8,13,11,16)(9,18,12,15), (1,7,5,11,3,9)(2,8,6,12,4,10)(13,20,15,22,17,24)(14,21,16,23,18,19), (1,5)(2,4)(8,12)(9,11)(13,15)(16,18)(19,21)(22,24)>;
G:=Group( (1,11)(2,12)(3,7)(4,8)(5,9)(6,10)(13,19)(14,20)(15,21)(16,22)(17,23)(18,24), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24), (1,22,4,19)(2,21,5,24)(3,20,6,23)(7,14,10,17)(8,13,11,16)(9,18,12,15), (1,7,5,11,3,9)(2,8,6,12,4,10)(13,20,15,22,17,24)(14,21,16,23,18,19), (1,5)(2,4)(8,12)(9,11)(13,15)(16,18)(19,21)(22,24) );
G=PermutationGroup([[(1,11),(2,12),(3,7),(4,8),(5,9),(6,10),(13,19),(14,20),(15,21),(16,22),(17,23),(18,24)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24)], [(1,22,4,19),(2,21,5,24),(3,20,6,23),(7,14,10,17),(8,13,11,16),(9,18,12,15)], [(1,7,5,11,3,9),(2,8,6,12,4,10),(13,20,15,22,17,24),(14,21,16,23,18,19)], [(1,5),(2,4),(8,12),(9,11),(13,15),(16,18),(19,21),(22,24)]])
G:=TransitiveGroup(24,671);
48 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 2J | 2K | 2L | 2M | 2N | 2O | 3A | 3B | 3C | 4A | 4B | 4C | 4D | 6A | ··· | 6F | 6G | ··· | 6Q | 6R | 6S | 6T | 6U | 12A | 12B | 12C | 12D |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 6 | ··· | 6 | 6 | ··· | 6 | 6 | 6 | 6 | 6 | 12 | 12 | 12 | 12 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 6 | 6 | 6 | 6 | 9 | 9 | 9 | 9 | 18 | 18 | 2 | 2 | 4 | 6 | 6 | 6 | 6 | 2 | ··· | 2 | 4 | ··· | 4 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 |
48 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | S3 | D4 | D6 | D6 | D6 | D6 | S32 | S3xD4 | C2xS32 | Dic3:D6 |
kernel | C2xDic3:D6 | C2xC6.D6 | C2xC3:D12 | Dic3:D6 | C6xC3:D4 | C22xS32 | C23xC3:S3 | C2xC3:D4 | C2xC3:S3 | C2xDic3 | C3:D4 | C22xS3 | C22xC6 | C23 | C6 | C22 | C2 |
# reps | 1 | 1 | 2 | 8 | 2 | 1 | 1 | 2 | 4 | 2 | 8 | 2 | 2 | 1 | 4 | 3 | 4 |
Matrix representation of C2xDic3:D6 ►in GL6(F13)
12 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
12 | 1 | 0 | 0 | 0 | 0 |
12 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 5 | 0 | 0 |
0 | 0 | 10 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 3 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 12 | 12 |
0 | 12 | 0 | 0 | 0 | 0 |
12 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
G:=sub<GL(6,GF(13))| [12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[12,12,0,0,0,0,1,0,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,10,0,0,0,0,5,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,3,0,0,0,0,0,1,0,0,0,0,0,0,0,12,0,0,0,0,1,12],[0,12,0,0,0,0,12,0,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,0,1,0,0,0,0,1,0] >;
C2xDic3:D6 in GAP, Magma, Sage, TeX
C_2\times {\rm Dic}_3\rtimes D_6
% in TeX
G:=Group("C2xDic3:D6");
// GroupNames label
G:=SmallGroup(288,977);
// by ID
G=gap.SmallGroup(288,977);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,675,346,1356,9414]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^6=d^6=e^2=1,c^2=b^3,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c^-1=e*b*e=b^-1,b*d=d*b,d*c*d^-1=b^3*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations