Copied to
clipboard

G = C2xDic3:D6order 288 = 25·32

Direct product of C2 and Dic3:D6

direct product, metabelian, supersoluble, monomial, rational

Aliases: C2xDic3:D6, C62:3C23, C23:5S32, C6:3(S3xD4), C3:D4:9D6, (C22xC6):8D6, (S3xC6):5C23, D6:4(C22xS3), C32:8(C22xD4), (C2xDic3):16D6, (C22xS3):13D6, C6.36(S3xC23), (C3xC6).36C24, (C2xC62):7C22, (C6xDic3):9C22, (C3xDic3):3C23, Dic3:3(C22xS3), C3:D12:18C22, C6.D6:12C22, C3:4(C2xS3xD4), C3:S3:4(C2xD4), C22:4(C2xS32), (C3xC6):7(C2xD4), (C2xC3:S3):18D4, (C22xS32):9C2, (C6xC3:D4):7C2, (C2xS32):12C22, (C2xC3:D4):11S3, (C23xC3:S3):5C2, (C2xC3:S3):5C23, (S3xC2xC6):12C22, (C2xC6):5(C22xS3), C2.36(C22xS32), (C2xC6.D6):6C2, (C2xC3:D12):22C2, (C3xC3:D4):13C22, (C22xC3:S3):14C22, SmallGroup(288,977)

Series: Derived Chief Lower central Upper central

C1C3xC6 — C2xDic3:D6
C1C3C32C3xC6S3xC6C2xS32C22xS32 — C2xDic3:D6
C32C3xC6 — C2xDic3:D6
C1C22C23

Generators and relations for C2xDic3:D6
 G = < a,b,c,d,e | a2=b6=d6=e2=1, c2=b3, ab=ba, ac=ca, ad=da, ae=ea, cbc-1=ebe=b-1, bd=db, dcd-1=b3c, ce=ec, ede=d-1 >

Subgroups: 2370 in 539 conjugacy classes, 124 normal (14 characteristic)
C1, C2, C2, C2, C3, C3, C4, C22, C22, C22, S3, C6, C6, C2xC4, D4, C23, C23, C32, Dic3, C12, D6, D6, C2xC6, C2xC6, C22xC4, C2xD4, C24, C3xS3, C3:S3, C3:S3, C3xC6, C3xC6, C3xC6, C4xS3, D12, C2xDic3, C3:D4, C3:D4, C2xC12, C3xD4, C22xS3, C22xS3, C22xC6, C22xC6, C22xD4, C3xDic3, S32, S3xC6, S3xC6, C2xC3:S3, C2xC3:S3, C62, C62, C62, S3xC2xC4, C2xD12, S3xD4, C2xC3:D4, C2xC3:D4, C6xD4, S3xC23, C6.D6, C3:D12, C6xDic3, C3xC3:D4, C2xS32, C2xS32, S3xC2xC6, C22xC3:S3, C22xC3:S3, C22xC3:S3, C2xC62, C2xS3xD4, C2xC6.D6, C2xC3:D12, Dic3:D6, C6xC3:D4, C22xS32, C23xC3:S3, C2xDic3:D6
Quotients: C1, C2, C22, S3, D4, C23, D6, C2xD4, C24, C22xS3, C22xD4, S32, S3xD4, S3xC23, C2xS32, C2xS3xD4, Dic3:D6, C22xS32, C2xDic3:D6

Permutation representations of C2xDic3:D6
On 24 points - transitive group 24T671
Generators in S24
(1 11)(2 12)(3 7)(4 8)(5 9)(6 10)(13 19)(14 20)(15 21)(16 22)(17 23)(18 24)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)
(1 22 4 19)(2 21 5 24)(3 20 6 23)(7 14 10 17)(8 13 11 16)(9 18 12 15)
(1 7 5 11 3 9)(2 8 6 12 4 10)(13 20 15 22 17 24)(14 21 16 23 18 19)
(1 5)(2 4)(8 12)(9 11)(13 15)(16 18)(19 21)(22 24)

G:=sub<Sym(24)| (1,11)(2,12)(3,7)(4,8)(5,9)(6,10)(13,19)(14,20)(15,21)(16,22)(17,23)(18,24), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24), (1,22,4,19)(2,21,5,24)(3,20,6,23)(7,14,10,17)(8,13,11,16)(9,18,12,15), (1,7,5,11,3,9)(2,8,6,12,4,10)(13,20,15,22,17,24)(14,21,16,23,18,19), (1,5)(2,4)(8,12)(9,11)(13,15)(16,18)(19,21)(22,24)>;

G:=Group( (1,11)(2,12)(3,7)(4,8)(5,9)(6,10)(13,19)(14,20)(15,21)(16,22)(17,23)(18,24), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24), (1,22,4,19)(2,21,5,24)(3,20,6,23)(7,14,10,17)(8,13,11,16)(9,18,12,15), (1,7,5,11,3,9)(2,8,6,12,4,10)(13,20,15,22,17,24)(14,21,16,23,18,19), (1,5)(2,4)(8,12)(9,11)(13,15)(16,18)(19,21)(22,24) );

G=PermutationGroup([[(1,11),(2,12),(3,7),(4,8),(5,9),(6,10),(13,19),(14,20),(15,21),(16,22),(17,23),(18,24)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24)], [(1,22,4,19),(2,21,5,24),(3,20,6,23),(7,14,10,17),(8,13,11,16),(9,18,12,15)], [(1,7,5,11,3,9),(2,8,6,12,4,10),(13,20,15,22,17,24),(14,21,16,23,18,19)], [(1,5),(2,4),(8,12),(9,11),(13,15),(16,18),(19,21),(22,24)]])

G:=TransitiveGroup(24,671);

48 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I2J2K2L2M2N2O3A3B3C4A4B4C4D6A···6F6G···6Q6R6S6T6U12A12B12C12D
order122222222222222233344446···66···6666612121212
size11112266669999181822466662···24···41212121212121212

48 irreducible representations

dim11111112222224444
type+++++++++++++++++
imageC1C2C2C2C2C2C2S3D4D6D6D6D6S32S3xD4C2xS32Dic3:D6
kernelC2xDic3:D6C2xC6.D6C2xC3:D12Dic3:D6C6xC3:D4C22xS32C23xC3:S3C2xC3:D4C2xC3:S3C2xDic3C3:D4C22xS3C22xC6C23C6C22C2
# reps11282112428221434

Matrix representation of C2xDic3:D6 in GL6(F13)

1200000
0120000
0012000
0001200
000010
000001
,
1210000
1200000
0012000
0001200
000010
000001
,
010000
100000
001500
00101200
000010
000001
,
100000
010000
0012000
003100
000001
00001212
,
0120000
1200000
0012000
0001200
000001
000010

G:=sub<GL(6,GF(13))| [12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[12,12,0,0,0,0,1,0,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,10,0,0,0,0,5,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,3,0,0,0,0,0,1,0,0,0,0,0,0,0,12,0,0,0,0,1,12],[0,12,0,0,0,0,12,0,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,0,1,0,0,0,0,1,0] >;

C2xDic3:D6 in GAP, Magma, Sage, TeX

C_2\times {\rm Dic}_3\rtimes D_6
% in TeX

G:=Group("C2xDic3:D6");
// GroupNames label

G:=SmallGroup(288,977);
// by ID

G=gap.SmallGroup(288,977);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,675,346,1356,9414]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^6=d^6=e^2=1,c^2=b^3,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c^-1=e*b*e=b^-1,b*d=d*b,d*c*d^-1=b^3*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<