Extensions 1→N→G→Q→1 with N=C2 and Q=C2×S3×Dic3

Direct product G=N×Q with N=C2 and Q=C2×S3×Dic3
dρLabelID
C22×S3×Dic396C2^2xS3xDic3288,969


Non-split extensions G=N.Q with N=C2 and Q=C2×S3×Dic3
extensionφ:Q→Aut NdρLabelID
C2.1(C2×S3×Dic3) = C2×S3×C3⋊C8central extension (φ=1)96C2.1(C2xS3xDic3)288,460
C2.2(C2×S3×Dic3) = C4×S3×Dic3central extension (φ=1)96C2.2(C2xS3xDic3)288,523
C2.3(C2×S3×Dic3) = C2×Dic32central extension (φ=1)96C2.3(C2xS3xDic3)288,602
C2.4(C2×S3×Dic3) = S3×C4.Dic3central stem extension (φ=1)484C2.4(C2xS3xDic3)288,461
C2.5(C2×S3×Dic3) = D12.2Dic3central stem extension (φ=1)484C2.5(C2xS3xDic3)288,462
C2.6(C2×S3×Dic3) = D12.Dic3central stem extension (φ=1)484C2.6(C2xS3xDic3)288,463
C2.7(C2×S3×Dic3) = C2×D6.Dic3central stem extension (φ=1)96C2.7(C2xS3xDic3)288,467
C2.8(C2×S3×Dic3) = C62.11C23central stem extension (φ=1)96C2.8(C2xS3xDic3)288,489
C2.9(C2×S3×Dic3) = Dic3×Dic6central stem extension (φ=1)96C2.9(C2xS3xDic3)288,490
C2.10(C2×S3×Dic3) = C62.13C23central stem extension (φ=1)96C2.10(C2xS3xDic3)288,491
C2.11(C2×S3×Dic3) = C62.25C23central stem extension (φ=1)96C2.11(C2xS3xDic3)288,503
C2.12(C2×S3×Dic3) = S3×C4⋊Dic3central stem extension (φ=1)96C2.12(C2xS3xDic3)288,537
C2.13(C2×S3×Dic3) = Dic3×D12central stem extension (φ=1)96C2.13(C2xS3xDic3)288,540
C2.14(C2×S3×Dic3) = D12⋊Dic3central stem extension (φ=1)96C2.14(C2xS3xDic3)288,546
C2.15(C2×S3×Dic3) = C62.97C23central stem extension (φ=1)48C2.15(C2xS3xDic3)288,603
C2.16(C2×S3×Dic3) = C2×D6⋊Dic3central stem extension (φ=1)96C2.16(C2xS3xDic3)288,608
C2.17(C2×S3×Dic3) = C2×Dic3⋊Dic3central stem extension (φ=1)96C2.17(C2xS3xDic3)288,613
C2.18(C2×S3×Dic3) = S3×C6.D4central stem extension (φ=1)48C2.18(C2xS3xDic3)288,616
C2.19(C2×S3×Dic3) = Dic3×C3⋊D4central stem extension (φ=1)48C2.19(C2xS3xDic3)288,620
C2.20(C2×S3×Dic3) = C62.115C23central stem extension (φ=1)48C2.20(C2xS3xDic3)288,621

׿
×
𝔽