Extensions 1→N→G→Q→1 with N=Dic3⋊D6 and Q=C2

Direct product G=N×Q with N=Dic3⋊D6 and Q=C2
dρLabelID
C2×Dic3⋊D624C2xDic3:D6288,977

Semidirect products G=N:Q with N=Dic3⋊D6 and Q=C2
extensionφ:Q→Out NdρLabelID
Dic3⋊D61C2 = D6≀C2φ: C2/C1C2 ⊆ Out Dic3⋊D6124+Dic3:D6:1C2288,889
Dic3⋊D62C2 = C62⋊D4φ: C2/C1C2 ⊆ Out Dic3⋊D6248+Dic3:D6:2C2288,890
Dic3⋊D63C2 = D1227D6φ: C2/C1C2 ⊆ Out Dic3⋊D6244+Dic3:D6:3C2288,956
Dic3⋊D64C2 = S32×D4φ: C2/C1C2 ⊆ Out Dic3⋊D6248+Dic3:D6:4C2288,958
Dic3⋊D65C2 = Dic612D6φ: C2/C1C2 ⊆ Out Dic3⋊D6248+Dic3:D6:5C2288,960
Dic3⋊D66C2 = D1213D6φ: C2/C1C2 ⊆ Out Dic3⋊D6248+Dic3:D6:6C2288,962
Dic3⋊D67C2 = C32⋊2+ 1+4φ: C2/C1C2 ⊆ Out Dic3⋊D6244Dic3:D6:7C2288,978
Dic3⋊D68C2 = D1223D6φ: trivial image244Dic3:D6:8C2288,954

Non-split extensions G=N.Q with N=Dic3⋊D6 and Q=C2
extensionφ:Q→Out NdρLabelID
Dic3⋊D6.1C2 = C62.2D4φ: C2/C1C2 ⊆ Out Dic3⋊D6244+Dic3:D6.1C2288,386
Dic3⋊D6.2C2 = C62.9D4φ: C2/C1C2 ⊆ Out Dic3⋊D6244Dic3:D6.2C2288,881

׿
×
𝔽