extension | φ:Q→Aut N | d | ρ | Label | ID |
C2.1(Dic3⋊D6) = C62.51C23 | central extension (φ=1) | 48 | | C2.1(Dic3:D6) | 288,529 |
C2.2(Dic3⋊D6) = C62.53C23 | central extension (φ=1) | 48 | | C2.2(Dic3:D6) | 288,531 |
C2.3(Dic3⋊D6) = C62.91C23 | central extension (φ=1) | 48 | | C2.3(Dic3:D6) | 288,569 |
C2.4(Dic3⋊D6) = C62.115C23 | central extension (φ=1) | 48 | | C2.4(Dic3:D6) | 288,621 |
C2.5(Dic3⋊D6) = C62.116C23 | central extension (φ=1) | 24 | | C2.5(Dic3:D6) | 288,622 |
C2.6(Dic3⋊D6) = C62.10C23 | central stem extension (φ=1) | 96 | | C2.6(Dic3:D6) | 288,488 |
C2.7(Dic3⋊D6) = C62.23C23 | central stem extension (φ=1) | 48 | | C2.7(Dic3:D6) | 288,501 |
C2.8(Dic3⋊D6) = C62.35C23 | central stem extension (φ=1) | 48 | | C2.8(Dic3:D6) | 288,513 |
C2.9(Dic3⋊D6) = D6⋊3Dic6 | central stem extension (φ=1) | 96 | | C2.9(Dic3:D6) | 288,544 |
C2.10(Dic3⋊D6) = C62.67C23 | central stem extension (φ=1) | 48 | | C2.10(Dic3:D6) | 288,545 |
C2.11(Dic3⋊D6) = Dic3⋊3D12 | central stem extension (φ=1) | 48 | | C2.11(Dic3:D6) | 288,558 |
C2.12(Dic3⋊D6) = C62.82C23 | central stem extension (φ=1) | 48 | | C2.12(Dic3:D6) | 288,560 |
C2.13(Dic3⋊D6) = C62.83C23 | central stem extension (φ=1) | 96 | | C2.13(Dic3:D6) | 288,561 |
C2.14(Dic3⋊D6) = D6⋊5D12 | central stem extension (φ=1) | 48 | | C2.14(Dic3:D6) | 288,571 |
C2.15(Dic3⋊D6) = D12⋊D6 | central stem extension (φ=1) | 24 | 8+ | C2.15(Dic3:D6) | 288,574 |
C2.16(Dic3⋊D6) = D12.D6 | central stem extension (φ=1) | 48 | 8- | C2.16(Dic3:D6) | 288,575 |
C2.17(Dic3⋊D6) = Dic6⋊D6 | central stem extension (φ=1) | 24 | 8+ | C2.17(Dic3:D6) | 288,578 |
C2.18(Dic3⋊D6) = Dic6.D6 | central stem extension (φ=1) | 48 | 8- | C2.18(Dic3:D6) | 288,579 |
C2.19(Dic3⋊D6) = D12.8D6 | central stem extension (φ=1) | 48 | 8- | C2.19(Dic3:D6) | 288,584 |
C2.20(Dic3⋊D6) = D12⋊5D6 | central stem extension (φ=1) | 24 | 8+ | C2.20(Dic3:D6) | 288,585 |
C2.21(Dic3⋊D6) = D12.9D6 | central stem extension (φ=1) | 48 | 8- | C2.21(Dic3:D6) | 288,588 |
C2.22(Dic3⋊D6) = D12.10D6 | central stem extension (φ=1) | 48 | 8+ | C2.22(Dic3:D6) | 288,589 |
C2.23(Dic3⋊D6) = Dic6.9D6 | central stem extension (φ=1) | 48 | 8- | C2.23(Dic3:D6) | 288,592 |
C2.24(Dic3⋊D6) = Dic6.10D6 | central stem extension (φ=1) | 48 | 8+ | C2.24(Dic3:D6) | 288,593 |
C2.25(Dic3⋊D6) = D12.14D6 | central stem extension (φ=1) | 48 | 8+ | C2.25(Dic3:D6) | 288,598 |
C2.26(Dic3⋊D6) = D12.15D6 | central stem extension (φ=1) | 48 | 8- | C2.26(Dic3:D6) | 288,599 |
C2.27(Dic3⋊D6) = C62.95C23 | central stem extension (φ=1) | 48 | | C2.27(Dic3:D6) | 288,601 |
C2.28(Dic3⋊D6) = C62.100C23 | central stem extension (φ=1) | 48 | | C2.28(Dic3:D6) | 288,606 |
C2.29(Dic3⋊D6) = C62.113C23 | central stem extension (φ=1) | 48 | | C2.29(Dic3:D6) | 288,619 |
C2.30(Dic3⋊D6) = C62.117C23 | central stem extension (φ=1) | 48 | | C2.30(Dic3:D6) | 288,623 |
C2.31(Dic3⋊D6) = C62.121C23 | central stem extension (φ=1) | 48 | | C2.31(Dic3:D6) | 288,627 |
C2.32(Dic3⋊D6) = C62⋊7D4 | central stem extension (φ=1) | 48 | | C2.32(Dic3:D6) | 288,628 |
C2.33(Dic3⋊D6) = C62⋊8D4 | central stem extension (φ=1) | 24 | | C2.33(Dic3:D6) | 288,629 |
C2.34(Dic3⋊D6) = C62⋊4Q8 | central stem extension (φ=1) | 48 | | C2.34(Dic3:D6) | 288,630 |
C2.35(Dic3⋊D6) = C62.125C23 | central stem extension (φ=1) | 48 | | C2.35(Dic3:D6) | 288,631 |