Copied to
clipboard

G = D12.8D6order 288 = 25·32

8th non-split extension by D12 of D6 acting via D6/C3=C22

metabelian, supersoluble, monomial

Aliases: D12.8D6, Dic6.7D6, D4.9S32, D4:S3:5S3, C3:C8.14D6, D4.S3:5S3, C6.59(S3xD4), (C3xD4).13D6, D12:S3:4C2, C3:3(D8:3S3), C32:12(C4oD8), C3:Dic3.58D4, C32:3Q16:8C2, C12.29D6:1C2, C12.D6:2C2, C3:3(Q8.7D6), C12.13(C22xS3), (C3xC12).13C23, D12.S3:12C2, C2.19(Dic3:D6), (C3xD12).15C22, (D4xC32).9C22, C32:4Q8.9C22, (C3xDic6).14C22, C4.13(C2xS32), (C3xD4:S3):4C2, (C3xD4.S3):8C2, (C2xC3:S3).23D4, (C3xC6).128(C2xD4), (C3xC3:C8).18C22, (C4xC3:S3).15C22, SmallGroup(288,584)

Series: Derived Chief Lower central Upper central

C1C3xC12 — D12.8D6
C1C3C32C3xC6C3xC12C3xD12D12:S3 — D12.8D6
C32C3xC6C3xC12 — D12.8D6
C1C2C4D4

Generators and relations for D12.8D6
 G = < a,b,c,d | a12=b2=c6=1, d2=a9, bab=a-1, cac-1=a7, ad=da, cbc-1=dbd-1=a3b, dcd-1=a3c-1 >

Subgroups: 602 in 144 conjugacy classes, 38 normal (all characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, S3, C6, C6, C8, C2xC4, D4, D4, Q8, C32, Dic3, C12, C12, D6, C2xC6, C2xC8, D8, SD16, Q16, C4oD4, C3xS3, C3:S3, C3xC6, C3xC6, C3:C8, C24, Dic6, Dic6, C4xS3, D12, D12, C2xDic3, C3:D4, C3xD4, C3xD4, C3xQ8, C4oD8, C3xDic3, C3:Dic3, C3:Dic3, C3xC12, S3xC6, C2xC3:S3, C62, S3xC8, C24:C2, Dic12, D4:S3, D4.S3, D4.S3, C3:Q16, C3xD8, C3xSD16, D4:2S3, Q8:3S3, C3xC3:C8, S3xDic3, C3:D12, C3xDic6, C3xD12, C32:4Q8, C4xC3:S3, C2xC3:Dic3, C32:7D4, D4xC32, D8:3S3, Q8.7D6, C12.29D6, D12.S3, C32:3Q16, C3xD4:S3, C3xD4.S3, D12:S3, C12.D6, D12.8D6
Quotients: C1, C2, C22, S3, D4, C23, D6, C2xD4, C22xS3, C4oD8, S32, S3xD4, C2xS32, D8:3S3, Q8.7D6, Dic3:D6, D12.8D6

Smallest permutation representation of D12.8D6
On 48 points
Generators in S48
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 36)(2 35)(3 34)(4 33)(5 32)(6 31)(7 30)(8 29)(9 28)(10 27)(11 26)(12 25)(13 39)(14 38)(15 37)(16 48)(17 47)(18 46)(19 45)(20 44)(21 43)(22 42)(23 41)(24 40)
(1 21 5 13 9 17)(2 16 6 20 10 24)(3 23 7 15 11 19)(4 18 8 22 12 14)(25 47 33 43 29 39)(26 42 34 38 30 46)(27 37 35 45 31 41)(28 44 36 40 32 48)
(1 42 10 39 7 48 4 45)(2 43 11 40 8 37 5 46)(3 44 12 41 9 38 6 47)(13 33 22 30 19 27 16 36)(14 34 23 31 20 28 17 25)(15 35 24 32 21 29 18 26)

G:=sub<Sym(48)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,36)(2,35)(3,34)(4,33)(5,32)(6,31)(7,30)(8,29)(9,28)(10,27)(11,26)(12,25)(13,39)(14,38)(15,37)(16,48)(17,47)(18,46)(19,45)(20,44)(21,43)(22,42)(23,41)(24,40), (1,21,5,13,9,17)(2,16,6,20,10,24)(3,23,7,15,11,19)(4,18,8,22,12,14)(25,47,33,43,29,39)(26,42,34,38,30,46)(27,37,35,45,31,41)(28,44,36,40,32,48), (1,42,10,39,7,48,4,45)(2,43,11,40,8,37,5,46)(3,44,12,41,9,38,6,47)(13,33,22,30,19,27,16,36)(14,34,23,31,20,28,17,25)(15,35,24,32,21,29,18,26)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,36)(2,35)(3,34)(4,33)(5,32)(6,31)(7,30)(8,29)(9,28)(10,27)(11,26)(12,25)(13,39)(14,38)(15,37)(16,48)(17,47)(18,46)(19,45)(20,44)(21,43)(22,42)(23,41)(24,40), (1,21,5,13,9,17)(2,16,6,20,10,24)(3,23,7,15,11,19)(4,18,8,22,12,14)(25,47,33,43,29,39)(26,42,34,38,30,46)(27,37,35,45,31,41)(28,44,36,40,32,48), (1,42,10,39,7,48,4,45)(2,43,11,40,8,37,5,46)(3,44,12,41,9,38,6,47)(13,33,22,30,19,27,16,36)(14,34,23,31,20,28,17,25)(15,35,24,32,21,29,18,26) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,36),(2,35),(3,34),(4,33),(5,32),(6,31),(7,30),(8,29),(9,28),(10,27),(11,26),(12,25),(13,39),(14,38),(15,37),(16,48),(17,47),(18,46),(19,45),(20,44),(21,43),(22,42),(23,41),(24,40)], [(1,21,5,13,9,17),(2,16,6,20,10,24),(3,23,7,15,11,19),(4,18,8,22,12,14),(25,47,33,43,29,39),(26,42,34,38,30,46),(27,37,35,45,31,41),(28,44,36,40,32,48)], [(1,42,10,39,7,48,4,45),(2,43,11,40,8,37,5,46),(3,44,12,41,9,38,6,47),(13,33,22,30,19,27,16,36),(14,34,23,31,20,28,17,25),(15,35,24,32,21,29,18,26)]])

33 conjugacy classes

class 1 2A2B2C2D3A3B3C4A4B4C4D4E6A6B6C6D6E6F6G6H8A8B8C8D12A12B12C12D24A24B24C24D
order12222333444446666666688881212121224242424
size1141218224299123622488882466664482412121212

33 irreducible representations

dim111111112222222224444448
type+++++++++++++++++++-+-
imageC1C2C2C2C2C2C2C2S3S3D4D4D6D6D6D6C4oD8S32S3xD4C2xS32D8:3S3Q8.7D6Dic3:D6D12.8D6
kernelD12.8D6C12.29D6D12.S3C32:3Q16C3xD4:S3C3xD4.S3D12:S3C12.D6D4:S3D4.S3C3:Dic3C2xC3:S3C3:C8Dic6D12C3xD4C32D4C6C4C3C3C2C1
# reps111111111111211241212221

Matrix representation of D12.8D6 in GL6(F73)

2700000
36460000
0072100
0072000
000010
000001
,
15140000
57580000
001000
0017200
0000720
0000072
,
4670000
39690000
0072000
0007200
0000721
0000720
,
6300000
3220000
001000
000100
000010
0000172

G:=sub<GL(6,GF(73))| [27,36,0,0,0,0,0,46,0,0,0,0,0,0,72,72,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[15,57,0,0,0,0,14,58,0,0,0,0,0,0,1,1,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,72],[4,39,0,0,0,0,67,69,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,72,72,0,0,0,0,1,0],[63,3,0,0,0,0,0,22,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0,72] >;

D12.8D6 in GAP, Magma, Sage, TeX

D_{12}._8D_6
% in TeX

G:=Group("D12.8D6");
// GroupNames label

G:=SmallGroup(288,584);
// by ID

G=gap.SmallGroup(288,584);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,120,254,135,675,346,185,80,1356,9414]);
// Polycyclic

G:=Group<a,b,c,d|a^12=b^2=c^6=1,d^2=a^9,b*a*b=a^-1,c*a*c^-1=a^7,a*d=d*a,c*b*c^-1=d*b*d^-1=a^3*b,d*c*d^-1=a^3*c^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<