Extensions 1→N→G→Q→1 with N=C3 and Q=D4⋊D6

Direct product G=N×Q with N=C3 and Q=D4⋊D6
dρLabelID
C3×D4⋊D6484C3xD4:D6288,720

Semidirect products G=N:Q with N=C3 and Q=D4⋊D6
extensionφ:Q→Aut NdρLabelID
C31(D4⋊D6) = D1218D6φ: D4⋊D6/C4.Dic3C2 ⊆ Aut C3244+C3:1(D4:D6)288,473
C32(D4⋊D6) = Dic63D6φ: D4⋊D6/D4⋊S3C2 ⊆ Aut C3488+C3:2(D4:D6)288,573
C33(D4⋊D6) = D126D6φ: D4⋊D6/Q82S3C2 ⊆ Aut C3488+C3:3(D4:D6)288,587
C34(D4⋊D6) = D1220D6φ: D4⋊D6/C2×D12C2 ⊆ Aut C3484C3:4(D4:D6)288,471
C35(D4⋊D6) = C62.73D4φ: D4⋊D6/C3×C4○D4C2 ⊆ Aut C372C3:5(D4:D6)288,806

Non-split extensions G=N.Q with N=C3 and Q=D4⋊D6
extensionφ:Q→Aut NdρLabelID
C3.(D4⋊D6) = D4⋊D18φ: D4⋊D6/C3×C4○D4C2 ⊆ Aut C3724+C3.(D4:D6)288,160

׿
×
𝔽