metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: D4⋊4D6, Q8⋊5D6, C12.49D4, C12.17C23, D12.11C22, D4⋊S3⋊6C2, C4○D4⋊3S3, C3⋊C8⋊4C22, (C2×C6).8D4, C3⋊5(C8⋊C22), (C2×C4).22D6, C6.59(C2×D4), (C2×D12)⋊10C2, Q8⋊2S3⋊6C2, (C3×D4)⋊4C22, C4.Dic3⋊9C2, (C3×Q8)⋊4C22, C4.24(C3⋊D4), C4.17(C22×S3), (C2×C12).42C22, C22.5(C3⋊D4), (C3×C4○D4)⋊1C2, C2.23(C2×C3⋊D4), SmallGroup(96,156)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D4⋊D6
G = < a,b,c,d | a4=b2=c6=d2=1, bab=dad=a-1, ac=ca, cbc-1=a2b, dbd=a-1b, dcd=c-1 >
Subgroups: 186 in 68 conjugacy classes, 29 normal (21 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C8, C2×C4, C2×C4, D4, D4, Q8, C23, C12, C12, D6, C2×C6, C2×C6, M4(2), D8, SD16, C2×D4, C4○D4, C3⋊C8, D12, D12, C2×C12, C2×C12, C3×D4, C3×D4, C3×Q8, C22×S3, C8⋊C22, C4.Dic3, D4⋊S3, Q8⋊2S3, C2×D12, C3×C4○D4, D4⋊D6
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C3⋊D4, C22×S3, C8⋊C22, C2×C3⋊D4, D4⋊D6
Character table of D4⋊D6
class | 1 | 2A | 2B | 2C | 2D | 2E | 3 | 4A | 4B | 4C | 6A | 6B | 6C | 6D | 8A | 8B | 12A | 12B | 12C | 12D | 12E | |
size | 1 | 1 | 2 | 4 | 12 | 12 | 2 | 2 | 2 | 4 | 2 | 4 | 4 | 4 | 12 | 12 | 2 | 2 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 2 | 0 | 0 | -1 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ10 | 2 | 2 | -2 | -2 | 0 | 0 | -1 | -2 | 2 | 2 | -1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | -1 | -1 | -1 | orthogonal lifted from D6 |
ρ11 | 2 | 2 | -2 | 2 | 0 | 0 | -1 | -2 | 2 | -2 | -1 | 1 | -1 | -1 | 0 | 0 | 1 | 1 | 1 | 1 | -1 | orthogonal lifted from D6 |
ρ12 | 2 | 2 | 2 | -2 | 0 | 0 | -1 | 2 | 2 | -2 | -1 | -1 | 1 | 1 | 0 | 0 | -1 | -1 | 1 | 1 | -1 | orthogonal lifted from D6 |
ρ13 | 2 | 2 | 2 | 0 | 0 | 0 | 2 | -2 | -2 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | -2 | -2 | 0 | 0 | -2 | orthogonal lifted from D4 |
ρ14 | 2 | 2 | -2 | 0 | 0 | 0 | 2 | 2 | -2 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | -2 | orthogonal lifted from D4 |
ρ15 | 2 | 2 | -2 | 0 | 0 | 0 | -1 | 2 | -2 | 0 | -1 | 1 | √-3 | -√-3 | 0 | 0 | -1 | -1 | -√-3 | √-3 | 1 | complex lifted from C3⋊D4 |
ρ16 | 2 | 2 | 2 | 0 | 0 | 0 | -1 | -2 | -2 | 0 | -1 | -1 | √-3 | -√-3 | 0 | 0 | 1 | 1 | √-3 | -√-3 | 1 | complex lifted from C3⋊D4 |
ρ17 | 2 | 2 | -2 | 0 | 0 | 0 | -1 | 2 | -2 | 0 | -1 | 1 | -√-3 | √-3 | 0 | 0 | -1 | -1 | √-3 | -√-3 | 1 | complex lifted from C3⋊D4 |
ρ18 | 2 | 2 | 2 | 0 | 0 | 0 | -1 | -2 | -2 | 0 | -1 | -1 | -√-3 | √-3 | 0 | 0 | 1 | 1 | -√-3 | √-3 | 1 | complex lifted from C3⋊D4 |
ρ19 | 4 | -4 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C8⋊C22 |
ρ20 | 4 | -4 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | -2√3 | 2√3 | 0 | 0 | 0 | orthogonal faithful |
ρ21 | 4 | -4 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 2√3 | -2√3 | 0 | 0 | 0 | orthogonal faithful |
(1 10 4 7)(2 11 5 8)(3 12 6 9)(13 19 16 22)(14 20 17 23)(15 21 18 24)
(1 22)(2 20)(3 24)(4 19)(5 23)(6 21)(7 13)(8 17)(9 15)(10 16)(11 14)(12 18)
(1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)
(1 3)(4 6)(7 12)(8 11)(9 10)(13 24)(14 23)(15 22)(16 21)(17 20)(18 19)
G:=sub<Sym(24)| (1,10,4,7)(2,11,5,8)(3,12,6,9)(13,19,16,22)(14,20,17,23)(15,21,18,24), (1,22)(2,20)(3,24)(4,19)(5,23)(6,21)(7,13)(8,17)(9,15)(10,16)(11,14)(12,18), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24), (1,3)(4,6)(7,12)(8,11)(9,10)(13,24)(14,23)(15,22)(16,21)(17,20)(18,19)>;
G:=Group( (1,10,4,7)(2,11,5,8)(3,12,6,9)(13,19,16,22)(14,20,17,23)(15,21,18,24), (1,22)(2,20)(3,24)(4,19)(5,23)(6,21)(7,13)(8,17)(9,15)(10,16)(11,14)(12,18), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24), (1,3)(4,6)(7,12)(8,11)(9,10)(13,24)(14,23)(15,22)(16,21)(17,20)(18,19) );
G=PermutationGroup([[(1,10,4,7),(2,11,5,8),(3,12,6,9),(13,19,16,22),(14,20,17,23),(15,21,18,24)], [(1,22),(2,20),(3,24),(4,19),(5,23),(6,21),(7,13),(8,17),(9,15),(10,16),(11,14),(12,18)], [(1,2,3),(4,5,6),(7,8,9),(10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24)], [(1,3),(4,6),(7,12),(8,11),(9,10),(13,24),(14,23),(15,22),(16,21),(17,20),(18,19)]])
G:=TransitiveGroup(24,110);
D4⋊D6 is a maximal subgroup of
Q8⋊5D12 D4.10D12 Q8.8D12 Q8.9D12 M4(2).D6 M4(2).15D6 2+ 1+4⋊6S3 2- 1+4⋊4S3 D8⋊15D6 D8⋊11D6 S3×C8⋊C22 D24⋊C22 C12.C24 D12.32C23 D12.34C23 D4⋊D18 C12.4S4 D12⋊20D6 D12⋊18D6 Dic6⋊3D6 D12⋊6D6 C62.73D4 C12.7S4 D20⋊21D6 D20⋊19D6 Dic10⋊3D6 D20⋊D6 D4⋊D30
D4⋊D6 is a maximal quotient of
C4⋊C4.232D6 C4⋊C4⋊36D6 C4⋊C4.236D6 C12.38SD16 C42.48D6 C12⋊7D8 Q8⋊5Dic6 C42.56D6 Q8⋊2D12 C4⋊D4.S3 D12⋊16D4 C4⋊D4⋊S3 (C2×C6).Q16 D12.36D4 C3⋊C8⋊6D4 C42.62D6 D12.23D4 C42.64D6 C42.68D6 D12.4Q8 C42.70D6 C4○D4⋊3Dic3 (C3×D4)⋊14D4 D4⋊D18 D12⋊20D6 D12⋊18D6 Dic6⋊3D6 D12⋊6D6 C62.73D4 D20⋊21D6 D20⋊19D6 Dic10⋊3D6 D20⋊D6 D4⋊D30
Matrix representation of D4⋊D6 ►in GL4(𝔽73) generated by
66 | 14 | 0 | 0 |
59 | 7 | 0 | 0 |
46 | 0 | 7 | 59 |
0 | 46 | 14 | 66 |
27 | 0 | 59 | 28 |
0 | 27 | 45 | 14 |
7 | 59 | 46 | 0 |
14 | 66 | 0 | 46 |
0 | 1 | 0 | 0 |
72 | 1 | 0 | 0 |
60 | 43 | 0 | 72 |
30 | 30 | 1 | 72 |
1 | 72 | 0 | 0 |
0 | 72 | 0 | 0 |
38 | 65 | 66 | 66 |
30 | 35 | 59 | 7 |
G:=sub<GL(4,GF(73))| [66,59,46,0,14,7,0,46,0,0,7,14,0,0,59,66],[27,0,7,14,0,27,59,66,59,45,46,0,28,14,0,46],[0,72,60,30,1,1,43,30,0,0,0,1,0,0,72,72],[1,0,38,30,72,72,65,35,0,0,66,59,0,0,66,7] >;
D4⋊D6 in GAP, Magma, Sage, TeX
D_4\rtimes D_6
% in TeX
G:=Group("D4:D6");
// GroupNames label
G:=SmallGroup(96,156);
// by ID
G=gap.SmallGroup(96,156);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-3,218,188,579,159,69,2309]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^2=c^6=d^2=1,b*a*b=d*a*d=a^-1,a*c=c*a,c*b*c^-1=a^2*b,d*b*d=a^-1*b,d*c*d=c^-1>;
// generators/relations
Export