Copied to
clipboard

G = D12:20D6order 288 = 25·32

4th semidirect product of D12 and D6 acting via D6/C6=C2

metabelian, supersoluble, monomial

Aliases: D12:20D6, Dic6:18D6, C62.42D4, C4oD12:3S3, (C2xD12):8S3, (C6xD12):2C2, (C3xC12).61D4, C32:2D8:5C2, C3:4(D4:D6), (C2xC12).112D6, C32:6(C8:C22), Dic6:S3:5C2, C3:4(D12:6C22), C12.58D6:9C2, (C3xD12):20C22, C12.43(C3:D4), (C3xC12).59C23, (C6xC12).72C22, C12.79(C22xS3), C32:4C8:2C22, C4.13(D6:S3), (C3xDic6):18C22, C22.4(D6:S3), (C2xC4).5S32, C4.74(C2xS32), (C3xC4oD12):2C2, (C3xC6).63(C2xD4), C6.71(C2xC3:D4), C2.6(C2xD6:S3), (C2xC6).55(C3:D4), SmallGroup(288,471)

Series: Derived Chief Lower central Upper central

C1C3xC12 — D12:20D6
C1C3C32C3xC6C3xC12C3xD12C32:2D8 — D12:20D6
C32C3xC6C3xC12 — D12:20D6
C1C2C2xC4

Generators and relations for D12:20D6
 G = < a,b,c,d | a12=b2=c6=d2=1, bab=a-1, ac=ca, dad=a7, cbc-1=a6b, dbd=a3b, dcd=c-1 >

Subgroups: 530 in 146 conjugacy classes, 44 normal (34 characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, C22, S3, C6, C6, C8, C2xC4, C2xC4, D4, Q8, C23, C32, Dic3, C12, C12, D6, C2xC6, C2xC6, M4(2), D8, SD16, C2xD4, C4oD4, C3xS3, C3xC6, C3xC6, C3:C8, Dic6, C4xS3, D12, D12, D12, C3:D4, C2xC12, C2xC12, C3xD4, C3xQ8, C22xS3, C22xC6, C8:C22, C3xDic3, C3xC12, S3xC6, C62, C4.Dic3, D4:S3, D4.S3, Q8:2S3, C2xD12, C4oD12, C6xD4, C3xC4oD4, C32:4C8, C3xDic6, S3xC12, C3xD12, C3xD12, C3xD12, C3xC3:D4, C6xC12, S3xC2xC6, D12:6C22, D4:D6, C32:2D8, Dic6:S3, C12.58D6, C6xD12, C3xC4oD12, D12:20D6
Quotients: C1, C2, C22, S3, D4, C23, D6, C2xD4, C3:D4, C22xS3, C8:C22, S32, C2xC3:D4, D6:S3, C2xS32, D12:6C22, D4:D6, C2xD6:S3, D12:20D6

Smallest permutation representation of D12:20D6
On 48 points
Generators in S48
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 21)(2 20)(3 19)(4 18)(5 17)(6 16)(7 15)(8 14)(9 13)(10 24)(11 23)(12 22)(25 45)(26 44)(27 43)(28 42)(29 41)(30 40)(31 39)(32 38)(33 37)(34 48)(35 47)(36 46)
(1 9 5)(2 10 6)(3 11 7)(4 12 8)(13 23 21 19 17 15)(14 24 22 20 18 16)(25 29 33)(26 30 34)(27 31 35)(28 32 36)(37 39 41 43 45 47)(38 40 42 44 46 48)
(1 30)(2 25)(3 32)(4 27)(5 34)(6 29)(7 36)(8 31)(9 26)(10 33)(11 28)(12 35)(13 41)(14 48)(15 43)(16 38)(17 45)(18 40)(19 47)(20 42)(21 37)(22 44)(23 39)(24 46)

G:=sub<Sym(48)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,21)(2,20)(3,19)(4,18)(5,17)(6,16)(7,15)(8,14)(9,13)(10,24)(11,23)(12,22)(25,45)(26,44)(27,43)(28,42)(29,41)(30,40)(31,39)(32,38)(33,37)(34,48)(35,47)(36,46), (1,9,5)(2,10,6)(3,11,7)(4,12,8)(13,23,21,19,17,15)(14,24,22,20,18,16)(25,29,33)(26,30,34)(27,31,35)(28,32,36)(37,39,41,43,45,47)(38,40,42,44,46,48), (1,30)(2,25)(3,32)(4,27)(5,34)(6,29)(7,36)(8,31)(9,26)(10,33)(11,28)(12,35)(13,41)(14,48)(15,43)(16,38)(17,45)(18,40)(19,47)(20,42)(21,37)(22,44)(23,39)(24,46)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,21)(2,20)(3,19)(4,18)(5,17)(6,16)(7,15)(8,14)(9,13)(10,24)(11,23)(12,22)(25,45)(26,44)(27,43)(28,42)(29,41)(30,40)(31,39)(32,38)(33,37)(34,48)(35,47)(36,46), (1,9,5)(2,10,6)(3,11,7)(4,12,8)(13,23,21,19,17,15)(14,24,22,20,18,16)(25,29,33)(26,30,34)(27,31,35)(28,32,36)(37,39,41,43,45,47)(38,40,42,44,46,48), (1,30)(2,25)(3,32)(4,27)(5,34)(6,29)(7,36)(8,31)(9,26)(10,33)(11,28)(12,35)(13,41)(14,48)(15,43)(16,38)(17,45)(18,40)(19,47)(20,42)(21,37)(22,44)(23,39)(24,46) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,21),(2,20),(3,19),(4,18),(5,17),(6,16),(7,15),(8,14),(9,13),(10,24),(11,23),(12,22),(25,45),(26,44),(27,43),(28,42),(29,41),(30,40),(31,39),(32,38),(33,37),(34,48),(35,47),(36,46)], [(1,9,5),(2,10,6),(3,11,7),(4,12,8),(13,23,21,19,17,15),(14,24,22,20,18,16),(25,29,33),(26,30,34),(27,31,35),(28,32,36),(37,39,41,43,45,47),(38,40,42,44,46,48)], [(1,30),(2,25),(3,32),(4,27),(5,34),(6,29),(7,36),(8,31),(9,26),(10,33),(11,28),(12,35),(13,41),(14,48),(15,43),(16,38),(17,45),(18,40),(19,47),(20,42),(21,37),(22,44),(23,39),(24,46)]])

39 conjugacy classes

class 1 2A2B2C2D2E3A3B3C4A4B4C6A6B6C6D6E6F6G6H6I···6N8A8B12A12B12C···12I12J12K
order122222333444666666666···688121212···121212
size11212121222422122222444412···123636224···41212

39 irreducible representations

dim11111122222222244444444
type+++++++++++++++-+-+
imageC1C2C2C2C2C2S3S3D4D4D6D6D6C3:D4C3:D4C8:C22S32D6:S3C2xS32D6:S3D12:6C22D4:D6D12:20D6
kernelD12:20D6C32:2D8Dic6:S3C12.58D6C6xD12C3xC4oD12C2xD12C4oD12C3xC12C62Dic6D12C2xC12C12C2xC6C32C2xC4C4C4C22C3C3C1
# reps12211111111324411111224

Matrix representation of D12:20D6 in GL4(F73) generated by

49000
0300
00240
00070
,
0300
49000
00065
0090
,
8000
06500
00640
0009
,
00640
0009
8000
06500
G:=sub<GL(4,GF(73))| [49,0,0,0,0,3,0,0,0,0,24,0,0,0,0,70],[0,49,0,0,3,0,0,0,0,0,0,9,0,0,65,0],[8,0,0,0,0,65,0,0,0,0,64,0,0,0,0,9],[0,0,8,0,0,0,0,65,64,0,0,0,0,9,0,0] >;

D12:20D6 in GAP, Magma, Sage, TeX

D_{12}\rtimes_{20}D_6
% in TeX

G:=Group("D12:20D6");
// GroupNames label

G:=SmallGroup(288,471);
// by ID

G=gap.SmallGroup(288,471);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,141,219,675,346,80,1356,9414]);
// Polycyclic

G:=Group<a,b,c,d|a^12=b^2=c^6=d^2=1,b*a*b=a^-1,a*c=c*a,d*a*d=a^7,c*b*c^-1=a^6*b,d*b*d=a^3*b,d*c*d=c^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<