Extensions 1→N→G→Q→1 with N=Dic6:S3 and Q=C2

Direct product G=NxQ with N=Dic6:S3 and Q=C2
dρLabelID
C2xDic6:S396C2xDic6:S3288,474

Semidirect products G=N:Q with N=Dic6:S3 and Q=C2
extensionφ:Q→Out NdρLabelID
Dic6:S3:1C2 = C24:9D6φ: C2/C1C2 ⊆ Out Dic6:S3484Dic6:S3:1C2288,444
Dic6:S3:2C2 = C24:6D6φ: C2/C1C2 ⊆ Out Dic6:S3484Dic6:S3:2C2288,446
Dic6:S3:3C2 = D24:5S3φ: C2/C1C2 ⊆ Out Dic6:S3484Dic6:S3:3C2288,458
Dic6:S3:4C2 = D12.4D6φ: C2/C1C2 ⊆ Out Dic6:S3484Dic6:S3:4C2288,459
Dic6:S3:5C2 = D12:20D6φ: C2/C1C2 ⊆ Out Dic6:S3484Dic6:S3:5C2288,471
Dic6:S3:6C2 = D12.32D6φ: C2/C1C2 ⊆ Out Dic6:S3484Dic6:S3:6C2288,475
Dic6:S3:7C2 = Dic6:3D6φ: C2/C1C2 ⊆ Out Dic6:S3488+Dic6:S3:7C2288,573
Dic6:S3:8C2 = S3xD4.S3φ: C2/C1C2 ⊆ Out Dic6:S3488-Dic6:S3:8C2288,576
Dic6:S3:9C2 = D12.22D6φ: C2/C1C2 ⊆ Out Dic6:S3488-Dic6:S3:9C2288,581
Dic6:S3:10C2 = D12.7D6φ: C2/C1C2 ⊆ Out Dic6:S3488+Dic6:S3:10C2288,582
Dic6:S3:11C2 = S3xQ8:2S3φ: C2/C1C2 ⊆ Out Dic6:S3488+Dic6:S3:11C2288,586
Dic6:S3:12C2 = D12.11D6φ: C2/C1C2 ⊆ Out Dic6:S3968-Dic6:S3:12C2288,591
Dic6:S3:13C2 = D12.24D6φ: C2/C1C2 ⊆ Out Dic6:S3968-Dic6:S3:13C2288,594
Dic6:S3:14C2 = D12.13D6φ: C2/C1C2 ⊆ Out Dic6:S3488+Dic6:S3:14C2288,597
Dic6:S3:15C2 = D12.30D6φ: trivial image484Dic6:S3:15C2288,470


׿
x
:
Z
F
o
wr
Q
<