metabelian, supersoluble, monomial
Aliases: Dic6⋊2S3, D12.2S3, C12.11D6, C32⋊3SD16, C4.9S32, (C3×C6).8D4, C3⋊2(D4.S3), C32⋊4C8⋊2C2, (C3×Dic6)⋊1C2, (C3×D12).1C2, C6.8(C3⋊D4), C3⋊2(Q8⋊2S3), (C3×C12).3C22, C2.4(D6⋊S3), SmallGroup(144,58)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for Dic6⋊S3
G = < a,b,c,d | a12=c3=d2=1, b2=a6, bab-1=a-1, ac=ca, dad=a7, bc=cb, dbd=a3b, dcd=c-1 >
Character table of Dic6⋊S3
class | 1 | 2A | 2B | 3A | 3B | 3C | 4A | 4B | 6A | 6B | 6C | 6D | 6E | 8A | 8B | 12A | 12B | 12C | 12D | 12E | 12F | |
size | 1 | 1 | 12 | 2 | 2 | 4 | 2 | 12 | 2 | 2 | 4 | 12 | 12 | 18 | 18 | 4 | 4 | 4 | 4 | 12 | 12 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 2 | 2 | 0 | -1 | 2 | -1 | 2 | -2 | 2 | -1 | -1 | 0 | 0 | 0 | 0 | -1 | 2 | -1 | -1 | 1 | 1 | orthogonal lifted from D6 |
ρ6 | 2 | 2 | 0 | -1 | 2 | -1 | 2 | 2 | 2 | -1 | -1 | 0 | 0 | 0 | 0 | -1 | 2 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ7 | 2 | 2 | 2 | 2 | -1 | -1 | 2 | 0 | -1 | 2 | -1 | -1 | -1 | 0 | 0 | 2 | -1 | -1 | -1 | 0 | 0 | orthogonal lifted from S3 |
ρ8 | 2 | 2 | -2 | 2 | -1 | -1 | 2 | 0 | -1 | 2 | -1 | 1 | 1 | 0 | 0 | 2 | -1 | -1 | -1 | 0 | 0 | orthogonal lifted from D6 |
ρ9 | 2 | 2 | 0 | 2 | 2 | 2 | -2 | 0 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 0 | -1 | 2 | -1 | -2 | 0 | 2 | -1 | -1 | 0 | 0 | 0 | 0 | 1 | -2 | 1 | 1 | √-3 | -√-3 | complex lifted from C3⋊D4 |
ρ11 | 2 | 2 | 0 | 2 | -1 | -1 | -2 | 0 | -1 | 2 | -1 | √-3 | -√-3 | 0 | 0 | -2 | 1 | 1 | 1 | 0 | 0 | complex lifted from C3⋊D4 |
ρ12 | 2 | 2 | 0 | -1 | 2 | -1 | -2 | 0 | 2 | -1 | -1 | 0 | 0 | 0 | 0 | 1 | -2 | 1 | 1 | -√-3 | √-3 | complex lifted from C3⋊D4 |
ρ13 | 2 | 2 | 0 | 2 | -1 | -1 | -2 | 0 | -1 | 2 | -1 | -√-3 | √-3 | 0 | 0 | -2 | 1 | 1 | 1 | 0 | 0 | complex lifted from C3⋊D4 |
ρ14 | 2 | -2 | 0 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | -2 | 0 | 0 | √-2 | -√-2 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from SD16 |
ρ15 | 2 | -2 | 0 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | -2 | 0 | 0 | -√-2 | √-2 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from SD16 |
ρ16 | 4 | -4 | 0 | -2 | 4 | -2 | 0 | 0 | -4 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from Q8⋊2S3 |
ρ17 | 4 | 4 | 0 | -2 | -2 | 1 | 4 | 0 | -2 | -2 | 1 | 0 | 0 | 0 | 0 | -2 | -2 | 1 | 1 | 0 | 0 | orthogonal lifted from S32 |
ρ18 | 4 | 4 | 0 | -2 | -2 | 1 | -4 | 0 | -2 | -2 | 1 | 0 | 0 | 0 | 0 | 2 | 2 | -1 | -1 | 0 | 0 | symplectic lifted from D6⋊S3, Schur index 2 |
ρ19 | 4 | -4 | 0 | 4 | -2 | -2 | 0 | 0 | 2 | -4 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from D4.S3, Schur index 2 |
ρ20 | 4 | -4 | 0 | -2 | -2 | 1 | 0 | 0 | 2 | 2 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 3i | -3i | 0 | 0 | complex faithful |
ρ21 | 4 | -4 | 0 | -2 | -2 | 1 | 0 | 0 | 2 | 2 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | -3i | 3i | 0 | 0 | complex faithful |
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 14 7 20)(2 13 8 19)(3 24 9 18)(4 23 10 17)(5 22 11 16)(6 21 12 15)(25 38 31 44)(26 37 32 43)(27 48 33 42)(28 47 34 41)(29 46 35 40)(30 45 36 39)
(1 5 9)(2 6 10)(3 7 11)(4 8 12)(13 21 17)(14 22 18)(15 23 19)(16 24 20)(25 33 29)(26 34 30)(27 35 31)(28 36 32)(37 41 45)(38 42 46)(39 43 47)(40 44 48)
(1 31)(2 26)(3 33)(4 28)(5 35)(6 30)(7 25)(8 32)(9 27)(10 34)(11 29)(12 36)(13 46)(14 41)(15 48)(16 43)(17 38)(18 45)(19 40)(20 47)(21 42)(22 37)(23 44)(24 39)
G:=sub<Sym(48)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,14,7,20)(2,13,8,19)(3,24,9,18)(4,23,10,17)(5,22,11,16)(6,21,12,15)(25,38,31,44)(26,37,32,43)(27,48,33,42)(28,47,34,41)(29,46,35,40)(30,45,36,39), (1,5,9)(2,6,10)(3,7,11)(4,8,12)(13,21,17)(14,22,18)(15,23,19)(16,24,20)(25,33,29)(26,34,30)(27,35,31)(28,36,32)(37,41,45)(38,42,46)(39,43,47)(40,44,48), (1,31)(2,26)(3,33)(4,28)(5,35)(6,30)(7,25)(8,32)(9,27)(10,34)(11,29)(12,36)(13,46)(14,41)(15,48)(16,43)(17,38)(18,45)(19,40)(20,47)(21,42)(22,37)(23,44)(24,39)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,14,7,20)(2,13,8,19)(3,24,9,18)(4,23,10,17)(5,22,11,16)(6,21,12,15)(25,38,31,44)(26,37,32,43)(27,48,33,42)(28,47,34,41)(29,46,35,40)(30,45,36,39), (1,5,9)(2,6,10)(3,7,11)(4,8,12)(13,21,17)(14,22,18)(15,23,19)(16,24,20)(25,33,29)(26,34,30)(27,35,31)(28,36,32)(37,41,45)(38,42,46)(39,43,47)(40,44,48), (1,31)(2,26)(3,33)(4,28)(5,35)(6,30)(7,25)(8,32)(9,27)(10,34)(11,29)(12,36)(13,46)(14,41)(15,48)(16,43)(17,38)(18,45)(19,40)(20,47)(21,42)(22,37)(23,44)(24,39) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,14,7,20),(2,13,8,19),(3,24,9,18),(4,23,10,17),(5,22,11,16),(6,21,12,15),(25,38,31,44),(26,37,32,43),(27,48,33,42),(28,47,34,41),(29,46,35,40),(30,45,36,39)], [(1,5,9),(2,6,10),(3,7,11),(4,8,12),(13,21,17),(14,22,18),(15,23,19),(16,24,20),(25,33,29),(26,34,30),(27,35,31),(28,36,32),(37,41,45),(38,42,46),(39,43,47),(40,44,48)], [(1,31),(2,26),(3,33),(4,28),(5,35),(6,30),(7,25),(8,32),(9,27),(10,34),(11,29),(12,36),(13,46),(14,41),(15,48),(16,43),(17,38),(18,45),(19,40),(20,47),(21,42),(22,37),(23,44),(24,39)]])
Dic6⋊S3 is a maximal subgroup of
C24⋊9D6 C24⋊6D6 D24⋊5S3 D12.4D6 D12.30D6 D12⋊20D6 D12.32D6 Dic6⋊3D6 S3×D4.S3 D12.22D6 D12.7D6 S3×Q8⋊2S3 D12.11D6 D12.24D6 D12.13D6 D12.D9 Dic6⋊D9 He3⋊4SD16 He3⋊5SD16 C33⋊12SD16 C33⋊13SD16 C33⋊18SD16
Dic6⋊S3 is a maximal quotient of
D12⋊3Dic3 Dic6⋊Dic3 C12.6Dic6 D12.D9 Dic6⋊D9 He3⋊3SD16 C33⋊12SD16 C33⋊13SD16 C33⋊18SD16
Matrix representation of Dic6⋊S3 ►in GL4(𝔽5) generated by
0 | 3 | 0 | 4 |
0 | 4 | 2 | 2 |
1 | 0 | 0 | 0 |
0 | 0 | 1 | 1 |
3 | 4 | 2 | 3 |
1 | 4 | 2 | 1 |
2 | 0 | 1 | 3 |
4 | 4 | 3 | 2 |
2 | 2 | 4 | 1 |
0 | 4 | 3 | 1 |
3 | 2 | 2 | 0 |
1 | 3 | 4 | 0 |
3 | 3 | 1 | 4 |
0 | 1 | 2 | 4 |
3 | 2 | 2 | 0 |
1 | 4 | 1 | 4 |
G:=sub<GL(4,GF(5))| [0,0,1,0,3,4,0,0,0,2,0,1,4,2,0,1],[3,1,2,4,4,4,0,4,2,2,1,3,3,1,3,2],[2,0,3,1,2,4,2,3,4,3,2,4,1,1,0,0],[3,0,3,1,3,1,2,4,1,2,2,1,4,4,0,4] >;
Dic6⋊S3 in GAP, Magma, Sage, TeX
{\rm Dic}_6\rtimes S_3
% in TeX
G:=Group("Dic6:S3");
// GroupNames label
G:=SmallGroup(144,58);
// by ID
G=gap.SmallGroup(144,58);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-3,-3,73,55,218,116,50,490,3461]);
// Polycyclic
G:=Group<a,b,c,d|a^12=c^3=d^2=1,b^2=a^6,b*a*b^-1=a^-1,a*c=c*a,d*a*d=a^7,b*c=c*b,d*b*d=a^3*b,d*c*d=c^-1>;
// generators/relations
Export
Subgroup lattice of Dic6⋊S3 in TeX
Character table of Dic6⋊S3 in TeX