Extensions 1→N→G→Q→1 with N=Dic3 and Q=D12

Direct product G=N×Q with N=Dic3 and Q=D12
dρLabelID
Dic3×D1296Dic3xD12288,540

Semidirect products G=N:Q with N=Dic3 and Q=D12
extensionφ:Q→Out NdρLabelID
Dic31D12 = C12⋊D12φ: D12/C12C2 ⊆ Out Dic348Dic3:1D12288,559
Dic32D12 = Dic3⋊D12φ: D12/D6C2 ⊆ Out Dic348Dic3:2D12288,534
Dic33D12 = Dic33D12φ: D12/D6C2 ⊆ Out Dic348Dic3:3D12288,558
Dic34D12 = Dic34D12φ: trivial image48Dic3:4D12288,528
Dic35D12 = Dic35D12φ: trivial image48Dic3:5D12288,542

Non-split extensions G=N.Q with N=Dic3 and Q=D12
extensionφ:Q→Out NdρLabelID
Dic3.1D12 = S3×C24⋊C2φ: D12/C12C2 ⊆ Out Dic3484Dic3.1D12288,440
Dic3.2D12 = S3×D24φ: D12/C12C2 ⊆ Out Dic3484+Dic3.2D12288,441
Dic3.3D12 = S3×Dic12φ: D12/C12C2 ⊆ Out Dic3964-Dic3.3D12288,447
Dic3.4D12 = Dic3.D12φ: D12/C12C2 ⊆ Out Dic348Dic3.4D12288,500
Dic3.5D12 = C123Dic6φ: D12/C12C2 ⊆ Out Dic396Dic3.5D12288,566
Dic3.6D12 = C241D6φ: D12/D6C2 ⊆ Out Dic3484+Dic3.6D12288,442
Dic3.7D12 = D24⋊S3φ: D12/D6C2 ⊆ Out Dic3484Dic3.7D12288,443
Dic3.8D12 = C24.3D6φ: D12/D6C2 ⊆ Out Dic3964-Dic3.8D12288,448
Dic3.9D12 = Dic12⋊S3φ: D12/D6C2 ⊆ Out Dic3484Dic3.9D12288,449
Dic3.10D12 = D62Dic6φ: D12/D6C2 ⊆ Out Dic396Dic3.10D12288,541
Dic3.11D12 = C62.65C23φ: D12/D6C2 ⊆ Out Dic348Dic3.11D12288,543
Dic3.12D12 = D6.1D12φ: trivial image484Dic3.12D12288,454
Dic3.13D12 = D247S3φ: trivial image964-Dic3.13D12288,455
Dic3.14D12 = D6.3D12φ: trivial image484+Dic3.14D12288,456

׿
×
𝔽