Extensions 1→N→G→Q→1 with N=Dic3 and Q=C2×Dic3

Direct product G=N×Q with N=Dic3 and Q=C2×Dic3
dρLabelID
C2×Dic3296C2xDic3^2288,602

Semidirect products G=N:Q with N=Dic3 and Q=C2×Dic3
extensionφ:Q→Out NdρLabelID
Dic31(C2×Dic3) = Dic3×C3⋊D4φ: C2×Dic3/Dic3C2 ⊆ Out Dic348Dic3:1(C2xDic3)288,620
Dic32(C2×Dic3) = C62.115C23φ: C2×Dic3/Dic3C2 ⊆ Out Dic348Dic3:2(C2xDic3)288,621
Dic33(C2×Dic3) = S3×C4⋊Dic3φ: C2×Dic3/C2×C6C2 ⊆ Out Dic396Dic3:3(C2xDic3)288,537
Dic34(C2×Dic3) = C2×Dic3⋊Dic3φ: C2×Dic3/C2×C6C2 ⊆ Out Dic396Dic3:4(C2xDic3)288,613
Dic35(C2×Dic3) = C4×S3×Dic3φ: trivial image96Dic3:5(C2xDic3)288,523

Non-split extensions G=N.Q with N=Dic3 and Q=C2×Dic3
extensionφ:Q→Out NdρLabelID
Dic3.1(C2×Dic3) = D12.2Dic3φ: C2×Dic3/Dic3C2 ⊆ Out Dic3484Dic3.1(C2xDic3)288,462
Dic3.2(C2×Dic3) = D12.Dic3φ: C2×Dic3/Dic3C2 ⊆ Out Dic3484Dic3.2(C2xDic3)288,463
Dic3.3(C2×Dic3) = Dic3×Dic6φ: C2×Dic3/Dic3C2 ⊆ Out Dic396Dic3.3(C2xDic3)288,490
Dic3.4(C2×Dic3) = C62.13C23φ: C2×Dic3/Dic3C2 ⊆ Out Dic396Dic3.4(C2xDic3)288,491
Dic3.5(C2×Dic3) = S3×C4.Dic3φ: C2×Dic3/C2×C6C2 ⊆ Out Dic3484Dic3.5(C2xDic3)288,461
Dic3.6(C2×Dic3) = C2×D6.Dic3φ: C2×Dic3/C2×C6C2 ⊆ Out Dic396Dic3.6(C2xDic3)288,467
Dic3.7(C2×Dic3) = C62.25C23φ: C2×Dic3/C2×C6C2 ⊆ Out Dic396Dic3.7(C2xDic3)288,503
Dic3.8(C2×Dic3) = C2×S3×C3⋊C8φ: trivial image96Dic3.8(C2xDic3)288,460
Dic3.9(C2×Dic3) = C62.11C23φ: trivial image96Dic3.9(C2xDic3)288,489
Dic3.10(C2×Dic3) = C62.97C23φ: trivial image48Dic3.10(C2xDic3)288,603

׿
×
𝔽