Extensions 1→N→G→Q→1 with N=C3 and Q=C4×D12

Direct product G=N×Q with N=C3 and Q=C4×D12
dρLabelID
C12×D1296C12xD12288,644

Semidirect products G=N:Q with N=C3 and Q=C4×D12
extensionφ:Q→Aut NdρLabelID
C31(C4×D12) = Dic35D12φ: C4×D12/C4⋊Dic3C2 ⊆ Aut C348C3:1(C4xD12)288,542
C32(C4×D12) = Dic34D12φ: C4×D12/D6⋊C4C2 ⊆ Aut C348C3:2(C4xD12)288,528
C33(C4×D12) = C4×C12⋊S3φ: C4×D12/C4×C12C2 ⊆ Aut C3144C3:3(C4xD12)288,730
C34(C4×D12) = C4×C3⋊D12φ: C4×D12/S3×C2×C4C2 ⊆ Aut C348C3:4(C4xD12)288,551
C35(C4×D12) = Dic3×D12φ: C4×D12/C2×D12C2 ⊆ Aut C396C3:5(C4xD12)288,540

Non-split extensions G=N.Q with N=C3 and Q=C4×D12
extensionφ:Q→Aut NdρLabelID
C3.(C4×D12) = C4×D36φ: C4×D12/C4×C12C2 ⊆ Aut C3144C3.(C4xD12)288,83

׿
×
𝔽