Copied to
clipboard

G = C4×C12⋊S3order 288 = 25·32

Direct product of C4 and C12⋊S3

direct product, metabelian, supersoluble, monomial

Aliases: C4×C12⋊S3, C125D12, C1228C2, C62.217C23, C129(C4×S3), (C4×C12)⋊9S3, C33(C4×D12), (C3×C12)⋊20D4, C3217(C4×D4), C425(C3⋊S3), C6.49(C2×D12), (C2×C12).356D6, C6.94(C4○D12), C12⋊Dic325C2, C6.11D1228C2, (C6×C12).286C22, C2.3(C12.59D6), C42(C4×C3⋊S3), C6.64(S3×C2×C4), (C3×C12)⋊17(C2×C4), C2.1(C2×C12⋊S3), (C3×C6).189(C2×D4), (C3×C6).95(C22×C4), (C2×C12⋊S3).17C2, (C3×C6).110(C4○D4), (C2×C6).234(C22×S3), C22.11(C22×C3⋊S3), (C22×C3⋊S3).80C22, (C2×C3⋊Dic3).152C22, C2.6(C2×C4×C3⋊S3), (C2×C4×C3⋊S3)⋊16C2, (C2×C3⋊S3)⋊9(C2×C4), (C2×C4).97(C2×C3⋊S3), SmallGroup(288,730)

Series: Derived Chief Lower central Upper central

C1C3×C6 — C4×C12⋊S3
C1C3C32C3×C6C62C22×C3⋊S3C2×C12⋊S3 — C4×C12⋊S3
C32C3×C6 — C4×C12⋊S3
C1C2×C4C42

Generators and relations for C4×C12⋊S3
 G = < a,b,c,d | a4=b12=c3=d2=1, ab=ba, ac=ca, ad=da, bc=cb, dbd=b-1, dcd=c-1 >

Subgroups: 1124 in 282 conjugacy classes, 97 normal (21 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C2×C4, C2×C4, D4, C23, C32, Dic3, C12, C12, D6, C2×C6, C42, C22⋊C4, C4⋊C4, C22×C4, C2×D4, C3⋊S3, C3×C6, C4×S3, D12, C2×Dic3, C2×C12, C22×S3, C4×D4, C3⋊Dic3, C3×C12, C3×C12, C2×C3⋊S3, C2×C3⋊S3, C62, C4⋊Dic3, D6⋊C4, C4×C12, S3×C2×C4, C2×D12, C4×C3⋊S3, C12⋊S3, C2×C3⋊Dic3, C6×C12, C22×C3⋊S3, C4×D12, C12⋊Dic3, C6.11D12, C122, C2×C4×C3⋊S3, C2×C12⋊S3, C4×C12⋊S3
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, C23, D6, C22×C4, C2×D4, C4○D4, C3⋊S3, C4×S3, D12, C22×S3, C4×D4, C2×C3⋊S3, S3×C2×C4, C2×D12, C4○D12, C4×C3⋊S3, C12⋊S3, C22×C3⋊S3, C4×D12, C2×C4×C3⋊S3, C2×C12⋊S3, C12.59D6, C4×C12⋊S3

Smallest permutation representation of C4×C12⋊S3
On 144 points
Generators in S144
(1 39 94 77)(2 40 95 78)(3 41 96 79)(4 42 85 80)(5 43 86 81)(6 44 87 82)(7 45 88 83)(8 46 89 84)(9 47 90 73)(10 48 91 74)(11 37 92 75)(12 38 93 76)(13 130 140 102)(14 131 141 103)(15 132 142 104)(16 121 143 105)(17 122 144 106)(18 123 133 107)(19 124 134 108)(20 125 135 97)(21 126 136 98)(22 127 137 99)(23 128 138 100)(24 129 139 101)(25 69 113 55)(26 70 114 56)(27 71 115 57)(28 72 116 58)(29 61 117 59)(30 62 118 60)(31 63 119 49)(32 64 120 50)(33 65 109 51)(34 66 110 52)(35 67 111 53)(36 68 112 54)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132)(133 134 135 136 137 138 139 140 141 142 143 144)
(1 126 28)(2 127 29)(3 128 30)(4 129 31)(5 130 32)(6 131 33)(7 132 34)(8 121 35)(9 122 36)(10 123 25)(11 124 26)(12 125 27)(13 50 81)(14 51 82)(15 52 83)(16 53 84)(17 54 73)(18 55 74)(19 56 75)(20 57 76)(21 58 77)(22 59 78)(23 60 79)(24 49 80)(37 134 70)(38 135 71)(39 136 72)(40 137 61)(41 138 62)(42 139 63)(43 140 64)(44 141 65)(45 142 66)(46 143 67)(47 144 68)(48 133 69)(85 101 119)(86 102 120)(87 103 109)(88 104 110)(89 105 111)(90 106 112)(91 107 113)(92 108 114)(93 97 115)(94 98 116)(95 99 117)(96 100 118)
(1 4)(2 3)(5 12)(6 11)(7 10)(8 9)(13 57)(14 56)(15 55)(16 54)(17 53)(18 52)(19 51)(20 50)(21 49)(22 60)(23 59)(24 58)(25 132)(26 131)(27 130)(28 129)(29 128)(30 127)(31 126)(32 125)(33 124)(34 123)(35 122)(36 121)(37 44)(38 43)(39 42)(40 41)(45 48)(46 47)(61 138)(62 137)(63 136)(64 135)(65 134)(66 133)(67 144)(68 143)(69 142)(70 141)(71 140)(72 139)(73 84)(74 83)(75 82)(76 81)(77 80)(78 79)(85 94)(86 93)(87 92)(88 91)(89 90)(95 96)(97 120)(98 119)(99 118)(100 117)(101 116)(102 115)(103 114)(104 113)(105 112)(106 111)(107 110)(108 109)

G:=sub<Sym(144)| (1,39,94,77)(2,40,95,78)(3,41,96,79)(4,42,85,80)(5,43,86,81)(6,44,87,82)(7,45,88,83)(8,46,89,84)(9,47,90,73)(10,48,91,74)(11,37,92,75)(12,38,93,76)(13,130,140,102)(14,131,141,103)(15,132,142,104)(16,121,143,105)(17,122,144,106)(18,123,133,107)(19,124,134,108)(20,125,135,97)(21,126,136,98)(22,127,137,99)(23,128,138,100)(24,129,139,101)(25,69,113,55)(26,70,114,56)(27,71,115,57)(28,72,116,58)(29,61,117,59)(30,62,118,60)(31,63,119,49)(32,64,120,50)(33,65,109,51)(34,66,110,52)(35,67,111,53)(36,68,112,54), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132)(133,134,135,136,137,138,139,140,141,142,143,144), (1,126,28)(2,127,29)(3,128,30)(4,129,31)(5,130,32)(6,131,33)(7,132,34)(8,121,35)(9,122,36)(10,123,25)(11,124,26)(12,125,27)(13,50,81)(14,51,82)(15,52,83)(16,53,84)(17,54,73)(18,55,74)(19,56,75)(20,57,76)(21,58,77)(22,59,78)(23,60,79)(24,49,80)(37,134,70)(38,135,71)(39,136,72)(40,137,61)(41,138,62)(42,139,63)(43,140,64)(44,141,65)(45,142,66)(46,143,67)(47,144,68)(48,133,69)(85,101,119)(86,102,120)(87,103,109)(88,104,110)(89,105,111)(90,106,112)(91,107,113)(92,108,114)(93,97,115)(94,98,116)(95,99,117)(96,100,118), (1,4)(2,3)(5,12)(6,11)(7,10)(8,9)(13,57)(14,56)(15,55)(16,54)(17,53)(18,52)(19,51)(20,50)(21,49)(22,60)(23,59)(24,58)(25,132)(26,131)(27,130)(28,129)(29,128)(30,127)(31,126)(32,125)(33,124)(34,123)(35,122)(36,121)(37,44)(38,43)(39,42)(40,41)(45,48)(46,47)(61,138)(62,137)(63,136)(64,135)(65,134)(66,133)(67,144)(68,143)(69,142)(70,141)(71,140)(72,139)(73,84)(74,83)(75,82)(76,81)(77,80)(78,79)(85,94)(86,93)(87,92)(88,91)(89,90)(95,96)(97,120)(98,119)(99,118)(100,117)(101,116)(102,115)(103,114)(104,113)(105,112)(106,111)(107,110)(108,109)>;

G:=Group( (1,39,94,77)(2,40,95,78)(3,41,96,79)(4,42,85,80)(5,43,86,81)(6,44,87,82)(7,45,88,83)(8,46,89,84)(9,47,90,73)(10,48,91,74)(11,37,92,75)(12,38,93,76)(13,130,140,102)(14,131,141,103)(15,132,142,104)(16,121,143,105)(17,122,144,106)(18,123,133,107)(19,124,134,108)(20,125,135,97)(21,126,136,98)(22,127,137,99)(23,128,138,100)(24,129,139,101)(25,69,113,55)(26,70,114,56)(27,71,115,57)(28,72,116,58)(29,61,117,59)(30,62,118,60)(31,63,119,49)(32,64,120,50)(33,65,109,51)(34,66,110,52)(35,67,111,53)(36,68,112,54), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132)(133,134,135,136,137,138,139,140,141,142,143,144), (1,126,28)(2,127,29)(3,128,30)(4,129,31)(5,130,32)(6,131,33)(7,132,34)(8,121,35)(9,122,36)(10,123,25)(11,124,26)(12,125,27)(13,50,81)(14,51,82)(15,52,83)(16,53,84)(17,54,73)(18,55,74)(19,56,75)(20,57,76)(21,58,77)(22,59,78)(23,60,79)(24,49,80)(37,134,70)(38,135,71)(39,136,72)(40,137,61)(41,138,62)(42,139,63)(43,140,64)(44,141,65)(45,142,66)(46,143,67)(47,144,68)(48,133,69)(85,101,119)(86,102,120)(87,103,109)(88,104,110)(89,105,111)(90,106,112)(91,107,113)(92,108,114)(93,97,115)(94,98,116)(95,99,117)(96,100,118), (1,4)(2,3)(5,12)(6,11)(7,10)(8,9)(13,57)(14,56)(15,55)(16,54)(17,53)(18,52)(19,51)(20,50)(21,49)(22,60)(23,59)(24,58)(25,132)(26,131)(27,130)(28,129)(29,128)(30,127)(31,126)(32,125)(33,124)(34,123)(35,122)(36,121)(37,44)(38,43)(39,42)(40,41)(45,48)(46,47)(61,138)(62,137)(63,136)(64,135)(65,134)(66,133)(67,144)(68,143)(69,142)(70,141)(71,140)(72,139)(73,84)(74,83)(75,82)(76,81)(77,80)(78,79)(85,94)(86,93)(87,92)(88,91)(89,90)(95,96)(97,120)(98,119)(99,118)(100,117)(101,116)(102,115)(103,114)(104,113)(105,112)(106,111)(107,110)(108,109) );

G=PermutationGroup([[(1,39,94,77),(2,40,95,78),(3,41,96,79),(4,42,85,80),(5,43,86,81),(6,44,87,82),(7,45,88,83),(8,46,89,84),(9,47,90,73),(10,48,91,74),(11,37,92,75),(12,38,93,76),(13,130,140,102),(14,131,141,103),(15,132,142,104),(16,121,143,105),(17,122,144,106),(18,123,133,107),(19,124,134,108),(20,125,135,97),(21,126,136,98),(22,127,137,99),(23,128,138,100),(24,129,139,101),(25,69,113,55),(26,70,114,56),(27,71,115,57),(28,72,116,58),(29,61,117,59),(30,62,118,60),(31,63,119,49),(32,64,120,50),(33,65,109,51),(34,66,110,52),(35,67,111,53),(36,68,112,54)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132),(133,134,135,136,137,138,139,140,141,142,143,144)], [(1,126,28),(2,127,29),(3,128,30),(4,129,31),(5,130,32),(6,131,33),(7,132,34),(8,121,35),(9,122,36),(10,123,25),(11,124,26),(12,125,27),(13,50,81),(14,51,82),(15,52,83),(16,53,84),(17,54,73),(18,55,74),(19,56,75),(20,57,76),(21,58,77),(22,59,78),(23,60,79),(24,49,80),(37,134,70),(38,135,71),(39,136,72),(40,137,61),(41,138,62),(42,139,63),(43,140,64),(44,141,65),(45,142,66),(46,143,67),(47,144,68),(48,133,69),(85,101,119),(86,102,120),(87,103,109),(88,104,110),(89,105,111),(90,106,112),(91,107,113),(92,108,114),(93,97,115),(94,98,116),(95,99,117),(96,100,118)], [(1,4),(2,3),(5,12),(6,11),(7,10),(8,9),(13,57),(14,56),(15,55),(16,54),(17,53),(18,52),(19,51),(20,50),(21,49),(22,60),(23,59),(24,58),(25,132),(26,131),(27,130),(28,129),(29,128),(30,127),(31,126),(32,125),(33,124),(34,123),(35,122),(36,121),(37,44),(38,43),(39,42),(40,41),(45,48),(46,47),(61,138),(62,137),(63,136),(64,135),(65,134),(66,133),(67,144),(68,143),(69,142),(70,141),(71,140),(72,139),(73,84),(74,83),(75,82),(76,81),(77,80),(78,79),(85,94),(86,93),(87,92),(88,91),(89,90),(95,96),(97,120),(98,119),(99,118),(100,117),(101,116),(102,115),(103,114),(104,113),(105,112),(106,111),(107,110),(108,109)]])

84 conjugacy classes

class 1 2A2B2C2D2E2F2G3A3B3C3D4A4B4C4D4E4F4G4H4I4J4K4L6A···6L12A···12AV
order1222222233334444444444446···612···12
size111118181818222211112222181818182···22···2

84 irreducible representations

dim11111112222222
type++++++++++
imageC1C2C2C2C2C2C4S3D4D6C4○D4C4×S3D12C4○D12
kernelC4×C12⋊S3C12⋊Dic3C6.11D12C122C2×C4×C3⋊S3C2×C12⋊S3C12⋊S3C4×C12C3×C12C2×C12C3×C6C12C12C6
# reps112121842122161616

Matrix representation of C4×C12⋊S3 in GL4(𝔽13) generated by

5000
0500
0050
0005
,
12100
12000
0098
0064
,
01200
11200
00110
00111
,
0100
1000
0098
0034
G:=sub<GL(4,GF(13))| [5,0,0,0,0,5,0,0,0,0,5,0,0,0,0,5],[12,12,0,0,1,0,0,0,0,0,9,6,0,0,8,4],[0,1,0,0,12,12,0,0,0,0,1,1,0,0,10,11],[0,1,0,0,1,0,0,0,0,0,9,3,0,0,8,4] >;

C4×C12⋊S3 in GAP, Magma, Sage, TeX

C_4\times C_{12}\rtimes S_3
% in TeX

G:=Group("C4xC12:S3");
// GroupNames label

G:=SmallGroup(288,730);
// by ID

G=gap.SmallGroup(288,730);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,253,120,58,2693,9414]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^12=c^3=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d=b^-1,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽