Copied to
clipboard

G = C4×D36order 288 = 25·32

Direct product of C4 and D36

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C4×D36, C365D4, C425D9, C12.55D12, C91(C4×D4), C42(C4×D9), C3.(C4×D12), C364(C2×C4), (C4×C36)⋊7C2, D181(C2×C4), C2.1(C2×D36), C18.2(C2×D4), D18⋊C417C2, C12.58(C4×S3), (C4×C12).13S3, C4⋊Dic916C2, (C2×C4).97D18, C6.31(C2×D12), (C2×D36).10C2, C18.4(C4○D4), (C2×C12).368D6, C18.4(C22×C4), C6.74(C4○D12), (C2×C36).72C22, (C2×C18).14C23, C2.3(D365C2), C22.11(C22×D9), (C2×Dic9).22C22, (C22×D9).15C22, (C2×C4×D9)⋊7C2, C2.6(C2×C4×D9), C6.43(S3×C2×C4), (C2×C6).171(C22×S3), SmallGroup(288,83)

Series: Derived Chief Lower central Upper central

C1C18 — C4×D36
C1C3C9C18C2×C18C22×D9C2×D36 — C4×D36
C9C18 — C4×D36
C1C2×C4C42

Generators and relations for C4×D36
 G = < a,b,c | a4=b36=c2=1, ab=ba, ac=ca, cbc=b-1 >

Subgroups: 656 in 141 conjugacy classes, 58 normal (30 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C2×C4, C2×C4, D4, C23, C9, Dic3, C12, C12, D6, C2×C6, C42, C22⋊C4, C4⋊C4, C22×C4, C2×D4, D9, C18, C4×S3, D12, C2×Dic3, C2×C12, C22×S3, C4×D4, Dic9, C36, C36, D18, D18, C2×C18, C4⋊Dic3, D6⋊C4, C4×C12, S3×C2×C4, C2×D12, C4×D9, D36, C2×Dic9, C2×C36, C22×D9, C4×D12, C4⋊Dic9, D18⋊C4, C4×C36, C2×C4×D9, C2×D36, C4×D36
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, C23, D6, C22×C4, C2×D4, C4○D4, D9, C4×S3, D12, C22×S3, C4×D4, D18, S3×C2×C4, C2×D12, C4○D12, C4×D9, D36, C22×D9, C4×D12, C2×C4×D9, C2×D36, D365C2, C4×D36

Smallest permutation representation of C4×D36
On 144 points
Generators in S144
(1 85 127 70)(2 86 128 71)(3 87 129 72)(4 88 130 37)(5 89 131 38)(6 90 132 39)(7 91 133 40)(8 92 134 41)(9 93 135 42)(10 94 136 43)(11 95 137 44)(12 96 138 45)(13 97 139 46)(14 98 140 47)(15 99 141 48)(16 100 142 49)(17 101 143 50)(18 102 144 51)(19 103 109 52)(20 104 110 53)(21 105 111 54)(22 106 112 55)(23 107 113 56)(24 108 114 57)(25 73 115 58)(26 74 116 59)(27 75 117 60)(28 76 118 61)(29 77 119 62)(30 78 120 63)(31 79 121 64)(32 80 122 65)(33 81 123 66)(34 82 124 67)(35 83 125 68)(36 84 126 69)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144)
(1 117)(2 116)(3 115)(4 114)(5 113)(6 112)(7 111)(8 110)(9 109)(10 144)(11 143)(12 142)(13 141)(14 140)(15 139)(16 138)(17 137)(18 136)(19 135)(20 134)(21 133)(22 132)(23 131)(24 130)(25 129)(26 128)(27 127)(28 126)(29 125)(30 124)(31 123)(32 122)(33 121)(34 120)(35 119)(36 118)(37 108)(38 107)(39 106)(40 105)(41 104)(42 103)(43 102)(44 101)(45 100)(46 99)(47 98)(48 97)(49 96)(50 95)(51 94)(52 93)(53 92)(54 91)(55 90)(56 89)(57 88)(58 87)(59 86)(60 85)(61 84)(62 83)(63 82)(64 81)(65 80)(66 79)(67 78)(68 77)(69 76)(70 75)(71 74)(72 73)

G:=sub<Sym(144)| (1,85,127,70)(2,86,128,71)(3,87,129,72)(4,88,130,37)(5,89,131,38)(6,90,132,39)(7,91,133,40)(8,92,134,41)(9,93,135,42)(10,94,136,43)(11,95,137,44)(12,96,138,45)(13,97,139,46)(14,98,140,47)(15,99,141,48)(16,100,142,49)(17,101,143,50)(18,102,144,51)(19,103,109,52)(20,104,110,53)(21,105,111,54)(22,106,112,55)(23,107,113,56)(24,108,114,57)(25,73,115,58)(26,74,116,59)(27,75,117,60)(28,76,118,61)(29,77,119,62)(30,78,120,63)(31,79,121,64)(32,80,122,65)(33,81,123,66)(34,82,124,67)(35,83,125,68)(36,84,126,69), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,117)(2,116)(3,115)(4,114)(5,113)(6,112)(7,111)(8,110)(9,109)(10,144)(11,143)(12,142)(13,141)(14,140)(15,139)(16,138)(17,137)(18,136)(19,135)(20,134)(21,133)(22,132)(23,131)(24,130)(25,129)(26,128)(27,127)(28,126)(29,125)(30,124)(31,123)(32,122)(33,121)(34,120)(35,119)(36,118)(37,108)(38,107)(39,106)(40,105)(41,104)(42,103)(43,102)(44,101)(45,100)(46,99)(47,98)(48,97)(49,96)(50,95)(51,94)(52,93)(53,92)(54,91)(55,90)(56,89)(57,88)(58,87)(59,86)(60,85)(61,84)(62,83)(63,82)(64,81)(65,80)(66,79)(67,78)(68,77)(69,76)(70,75)(71,74)(72,73)>;

G:=Group( (1,85,127,70)(2,86,128,71)(3,87,129,72)(4,88,130,37)(5,89,131,38)(6,90,132,39)(7,91,133,40)(8,92,134,41)(9,93,135,42)(10,94,136,43)(11,95,137,44)(12,96,138,45)(13,97,139,46)(14,98,140,47)(15,99,141,48)(16,100,142,49)(17,101,143,50)(18,102,144,51)(19,103,109,52)(20,104,110,53)(21,105,111,54)(22,106,112,55)(23,107,113,56)(24,108,114,57)(25,73,115,58)(26,74,116,59)(27,75,117,60)(28,76,118,61)(29,77,119,62)(30,78,120,63)(31,79,121,64)(32,80,122,65)(33,81,123,66)(34,82,124,67)(35,83,125,68)(36,84,126,69), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,117)(2,116)(3,115)(4,114)(5,113)(6,112)(7,111)(8,110)(9,109)(10,144)(11,143)(12,142)(13,141)(14,140)(15,139)(16,138)(17,137)(18,136)(19,135)(20,134)(21,133)(22,132)(23,131)(24,130)(25,129)(26,128)(27,127)(28,126)(29,125)(30,124)(31,123)(32,122)(33,121)(34,120)(35,119)(36,118)(37,108)(38,107)(39,106)(40,105)(41,104)(42,103)(43,102)(44,101)(45,100)(46,99)(47,98)(48,97)(49,96)(50,95)(51,94)(52,93)(53,92)(54,91)(55,90)(56,89)(57,88)(58,87)(59,86)(60,85)(61,84)(62,83)(63,82)(64,81)(65,80)(66,79)(67,78)(68,77)(69,76)(70,75)(71,74)(72,73) );

G=PermutationGroup([[(1,85,127,70),(2,86,128,71),(3,87,129,72),(4,88,130,37),(5,89,131,38),(6,90,132,39),(7,91,133,40),(8,92,134,41),(9,93,135,42),(10,94,136,43),(11,95,137,44),(12,96,138,45),(13,97,139,46),(14,98,140,47),(15,99,141,48),(16,100,142,49),(17,101,143,50),(18,102,144,51),(19,103,109,52),(20,104,110,53),(21,105,111,54),(22,106,112,55),(23,107,113,56),(24,108,114,57),(25,73,115,58),(26,74,116,59),(27,75,117,60),(28,76,118,61),(29,77,119,62),(30,78,120,63),(31,79,121,64),(32,80,122,65),(33,81,123,66),(34,82,124,67),(35,83,125,68),(36,84,126,69)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)], [(1,117),(2,116),(3,115),(4,114),(5,113),(6,112),(7,111),(8,110),(9,109),(10,144),(11,143),(12,142),(13,141),(14,140),(15,139),(16,138),(17,137),(18,136),(19,135),(20,134),(21,133),(22,132),(23,131),(24,130),(25,129),(26,128),(27,127),(28,126),(29,125),(30,124),(31,123),(32,122),(33,121),(34,120),(35,119),(36,118),(37,108),(38,107),(39,106),(40,105),(41,104),(42,103),(43,102),(44,101),(45,100),(46,99),(47,98),(48,97),(49,96),(50,95),(51,94),(52,93),(53,92),(54,91),(55,90),(56,89),(57,88),(58,87),(59,86),(60,85),(61,84),(62,83),(63,82),(64,81),(65,80),(66,79),(67,78),(68,77),(69,76),(70,75),(71,74),(72,73)]])

84 conjugacy classes

class 1 2A2B2C2D2E2F2G 3 4A4B4C4D4E4F4G4H4I4J4K4L6A6B6C9A9B9C12A···12L18A···18I36A···36AJ
order12222222344444444444466699912···1218···1836···36
size111118181818211112222181818182222222···22···22···2

84 irreducible representations

dim1111111222222222222
type+++++++++++++
imageC1C2C2C2C2C2C4S3D4D6C4○D4D9C4×S3D12D18C4○D12C4×D9D36D365C2
kernelC4×D36C4⋊Dic9D18⋊C4C4×C36C2×C4×D9C2×D36D36C4×C12C36C2×C12C18C42C12C12C2×C4C6C4C4C2
# reps1121218123234494121212

Matrix representation of C4×D36 in GL3(𝔽37) generated by

600
060
006
,
3600
048
02912
,
100
0620
02631
G:=sub<GL(3,GF(37))| [6,0,0,0,6,0,0,0,6],[36,0,0,0,4,29,0,8,12],[1,0,0,0,6,26,0,20,31] >;

C4×D36 in GAP, Magma, Sage, TeX

C_4\times D_{36}
% in TeX

G:=Group("C4xD36");
// GroupNames label

G:=SmallGroup(288,83);
// by ID

G=gap.SmallGroup(288,83);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,253,120,58,6725,292,9414]);
// Polycyclic

G:=Group<a,b,c|a^4=b^36=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations

׿
×
𝔽