Extensions 1→N→G→Q→1 with N=C3xD4.S3 and Q=C2

Direct product G=NxQ with N=C3xD4.S3 and Q=C2
dρLabelID
C6xD4.S348C6xD4.S3288,704

Semidirect products G=N:Q with N=C3xD4.S3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3xD4.S3):1C2 = Dic6.19D6φ: C2/C1C2 ⊆ Out C3xD4.S3488-(C3xD4.S3):1C2288,577
(C3xD4.S3):2C2 = Dic6.D6φ: C2/C1C2 ⊆ Out C3xD4.S3488-(C3xD4.S3):2C2288,579
(C3xD4.S3):3C2 = D12.7D6φ: C2/C1C2 ⊆ Out C3xD4.S3488+(C3xD4.S3):3C2288,582
(C3xD4.S3):4C2 = D12:5D6φ: C2/C1C2 ⊆ Out C3xD4.S3248+(C3xD4.S3):4C2288,585
(C3xD4.S3):5C2 = S3xD4.S3φ: C2/C1C2 ⊆ Out C3xD4.S3488-(C3xD4.S3):5C2288,576
(C3xD4.S3):6C2 = Dic6:D6φ: C2/C1C2 ⊆ Out C3xD4.S3248+(C3xD4.S3):6C2288,578
(C3xD4.S3):7C2 = Dic6.20D6φ: C2/C1C2 ⊆ Out C3xD4.S3488+(C3xD4.S3):7C2288,583
(C3xD4.S3):8C2 = D12.8D6φ: C2/C1C2 ⊆ Out C3xD4.S3488-(C3xD4.S3):8C2288,584
(C3xD4.S3):9C2 = C3xD8:S3φ: C2/C1C2 ⊆ Out C3xD4.S3484(C3xD4.S3):9C2288,682
(C3xD4.S3):10C2 = C3xD4.D6φ: C2/C1C2 ⊆ Out C3xD4.S3484(C3xD4.S3):10C2288,686
(C3xD4.S3):11C2 = C3xD12:6C22φ: C2/C1C2 ⊆ Out C3xD4.S3244(C3xD4.S3):11C2288,703
(C3xD4.S3):12C2 = C3xQ8.14D6φ: C2/C1C2 ⊆ Out C3xD4.S3484(C3xD4.S3):12C2288,722
(C3xD4.S3):13C2 = C3xD8:3S3φ: C2/C1C2 ⊆ Out C3xD4.S3484(C3xD4.S3):13C2288,683
(C3xD4.S3):14C2 = C3xS3xSD16φ: C2/C1C2 ⊆ Out C3xD4.S3484(C3xD4.S3):14C2288,684
(C3xD4.S3):15C2 = C3xQ8.13D6φ: trivial image484(C3xD4.S3):15C2288,721


׿
x
:
Z
F
o
wr
Q
<