Extensions 1→N→G→Q→1 with N=C2×S3×A4 and Q=C2

Direct product G=N×Q with N=C2×S3×A4 and Q=C2
dρLabelID
C22×S3×A436C2^2xS3xA4288,1037

Semidirect products G=N:Q with N=C2×S3×A4 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×S3×A4)⋊1C2 = D6⋊S4φ: C2/C1C2 ⊆ Out C2×S3×A4366(C2xS3xA4):1C2288,857
(C2×S3×A4)⋊2C2 = A4⋊D12φ: C2/C1C2 ⊆ Out C2×S3×A4366+(C2xS3xA4):2C2288,858
(C2×S3×A4)⋊3C2 = A4×D12φ: C2/C1C2 ⊆ Out C2×S3×A4366+(C2xS3xA4):3C2288,920
(C2×S3×A4)⋊4C2 = A4×C3⋊D4φ: C2/C1C2 ⊆ Out C2×S3×A4366(C2xS3xA4):4C2288,928
(C2×S3×A4)⋊5C2 = C2×S3×S4φ: C2/C1C2 ⊆ Out C2×S3×A4186+(C2xS3xA4):5C2288,1028

Non-split extensions G=N.Q with N=C2×S3×A4 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×S3×A4).C2 = S3×A4⋊C4φ: C2/C1C2 ⊆ Out C2×S3×A4366(C2xS3xA4).C2288,856
(C2×S3×A4).2C2 = C4×S3×A4φ: trivial image366(C2xS3xA4).2C2288,919

׿
×
𝔽