Copied to
clipboard

G = C13×SL2(𝔽3)  order 312 = 23·3·13

Direct product of C13 and SL2(𝔽3)

direct product, non-abelian, soluble

Aliases: C13×SL2(𝔽3), Q8⋊C39, C26.2A4, C2.(A4×C13), (Q8×C13)⋊1C3, SmallGroup(312,25)

Series: Derived Chief Lower central Upper central

C1C2Q8 — C13×SL2(𝔽3)
C1C2Q8Q8×C13 — C13×SL2(𝔽3)
Q8 — C13×SL2(𝔽3)
C1C26

Generators and relations for C13×SL2(𝔽3)
 G = < a,b,c,d | a13=b4=d3=1, c2=b2, ab=ba, ac=ca, ad=da, cbc-1=b-1, dbd-1=c, dcd-1=bc >

4C3
3C4
4C6
4C39
3C52
4C78

Smallest permutation representation of C13×SL2(𝔽3)
On 104 points
Generators in S104
(1 2 3 4 5 6 7 8 9 10 11 12 13)(14 15 16 17 18 19 20 21 22 23 24 25 26)(27 28 29 30 31 32 33 34 35 36 37 38 39)(40 41 42 43 44 45 46 47 48 49 50 51 52)(53 54 55 56 57 58 59 60 61 62 63 64 65)(66 67 68 69 70 71 72 73 74 75 76 77 78)(79 80 81 82 83 84 85 86 87 88 89 90 91)(92 93 94 95 96 97 98 99 100 101 102 103 104)
(1 21 61 33)(2 22 62 34)(3 23 63 35)(4 24 64 36)(5 25 65 37)(6 26 53 38)(7 14 54 39)(8 15 55 27)(9 16 56 28)(10 17 57 29)(11 18 58 30)(12 19 59 31)(13 20 60 32)(40 70 93 91)(41 71 94 79)(42 72 95 80)(43 73 96 81)(44 74 97 82)(45 75 98 83)(46 76 99 84)(47 77 100 85)(48 78 101 86)(49 66 102 87)(50 67 103 88)(51 68 104 89)(52 69 92 90)
(1 87 61 66)(2 88 62 67)(3 89 63 68)(4 90 64 69)(5 91 65 70)(6 79 53 71)(7 80 54 72)(8 81 55 73)(9 82 56 74)(10 83 57 75)(11 84 58 76)(12 85 59 77)(13 86 60 78)(14 95 39 42)(15 96 27 43)(16 97 28 44)(17 98 29 45)(18 99 30 46)(19 100 31 47)(20 101 32 48)(21 102 33 49)(22 103 34 50)(23 104 35 51)(24 92 36 52)(25 93 37 40)(26 94 38 41)
(14 95 80)(15 96 81)(16 97 82)(17 98 83)(18 99 84)(19 100 85)(20 101 86)(21 102 87)(22 103 88)(23 104 89)(24 92 90)(25 93 91)(26 94 79)(27 43 73)(28 44 74)(29 45 75)(30 46 76)(31 47 77)(32 48 78)(33 49 66)(34 50 67)(35 51 68)(36 52 69)(37 40 70)(38 41 71)(39 42 72)

G:=sub<Sym(104)| (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65)(66,67,68,69,70,71,72,73,74,75,76,77,78)(79,80,81,82,83,84,85,86,87,88,89,90,91)(92,93,94,95,96,97,98,99,100,101,102,103,104), (1,21,61,33)(2,22,62,34)(3,23,63,35)(4,24,64,36)(5,25,65,37)(6,26,53,38)(7,14,54,39)(8,15,55,27)(9,16,56,28)(10,17,57,29)(11,18,58,30)(12,19,59,31)(13,20,60,32)(40,70,93,91)(41,71,94,79)(42,72,95,80)(43,73,96,81)(44,74,97,82)(45,75,98,83)(46,76,99,84)(47,77,100,85)(48,78,101,86)(49,66,102,87)(50,67,103,88)(51,68,104,89)(52,69,92,90), (1,87,61,66)(2,88,62,67)(3,89,63,68)(4,90,64,69)(5,91,65,70)(6,79,53,71)(7,80,54,72)(8,81,55,73)(9,82,56,74)(10,83,57,75)(11,84,58,76)(12,85,59,77)(13,86,60,78)(14,95,39,42)(15,96,27,43)(16,97,28,44)(17,98,29,45)(18,99,30,46)(19,100,31,47)(20,101,32,48)(21,102,33,49)(22,103,34,50)(23,104,35,51)(24,92,36,52)(25,93,37,40)(26,94,38,41), (14,95,80)(15,96,81)(16,97,82)(17,98,83)(18,99,84)(19,100,85)(20,101,86)(21,102,87)(22,103,88)(23,104,89)(24,92,90)(25,93,91)(26,94,79)(27,43,73)(28,44,74)(29,45,75)(30,46,76)(31,47,77)(32,48,78)(33,49,66)(34,50,67)(35,51,68)(36,52,69)(37,40,70)(38,41,71)(39,42,72)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65)(66,67,68,69,70,71,72,73,74,75,76,77,78)(79,80,81,82,83,84,85,86,87,88,89,90,91)(92,93,94,95,96,97,98,99,100,101,102,103,104), (1,21,61,33)(2,22,62,34)(3,23,63,35)(4,24,64,36)(5,25,65,37)(6,26,53,38)(7,14,54,39)(8,15,55,27)(9,16,56,28)(10,17,57,29)(11,18,58,30)(12,19,59,31)(13,20,60,32)(40,70,93,91)(41,71,94,79)(42,72,95,80)(43,73,96,81)(44,74,97,82)(45,75,98,83)(46,76,99,84)(47,77,100,85)(48,78,101,86)(49,66,102,87)(50,67,103,88)(51,68,104,89)(52,69,92,90), (1,87,61,66)(2,88,62,67)(3,89,63,68)(4,90,64,69)(5,91,65,70)(6,79,53,71)(7,80,54,72)(8,81,55,73)(9,82,56,74)(10,83,57,75)(11,84,58,76)(12,85,59,77)(13,86,60,78)(14,95,39,42)(15,96,27,43)(16,97,28,44)(17,98,29,45)(18,99,30,46)(19,100,31,47)(20,101,32,48)(21,102,33,49)(22,103,34,50)(23,104,35,51)(24,92,36,52)(25,93,37,40)(26,94,38,41), (14,95,80)(15,96,81)(16,97,82)(17,98,83)(18,99,84)(19,100,85)(20,101,86)(21,102,87)(22,103,88)(23,104,89)(24,92,90)(25,93,91)(26,94,79)(27,43,73)(28,44,74)(29,45,75)(30,46,76)(31,47,77)(32,48,78)(33,49,66)(34,50,67)(35,51,68)(36,52,69)(37,40,70)(38,41,71)(39,42,72) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13),(14,15,16,17,18,19,20,21,22,23,24,25,26),(27,28,29,30,31,32,33,34,35,36,37,38,39),(40,41,42,43,44,45,46,47,48,49,50,51,52),(53,54,55,56,57,58,59,60,61,62,63,64,65),(66,67,68,69,70,71,72,73,74,75,76,77,78),(79,80,81,82,83,84,85,86,87,88,89,90,91),(92,93,94,95,96,97,98,99,100,101,102,103,104)], [(1,21,61,33),(2,22,62,34),(3,23,63,35),(4,24,64,36),(5,25,65,37),(6,26,53,38),(7,14,54,39),(8,15,55,27),(9,16,56,28),(10,17,57,29),(11,18,58,30),(12,19,59,31),(13,20,60,32),(40,70,93,91),(41,71,94,79),(42,72,95,80),(43,73,96,81),(44,74,97,82),(45,75,98,83),(46,76,99,84),(47,77,100,85),(48,78,101,86),(49,66,102,87),(50,67,103,88),(51,68,104,89),(52,69,92,90)], [(1,87,61,66),(2,88,62,67),(3,89,63,68),(4,90,64,69),(5,91,65,70),(6,79,53,71),(7,80,54,72),(8,81,55,73),(9,82,56,74),(10,83,57,75),(11,84,58,76),(12,85,59,77),(13,86,60,78),(14,95,39,42),(15,96,27,43),(16,97,28,44),(17,98,29,45),(18,99,30,46),(19,100,31,47),(20,101,32,48),(21,102,33,49),(22,103,34,50),(23,104,35,51),(24,92,36,52),(25,93,37,40),(26,94,38,41)], [(14,95,80),(15,96,81),(16,97,82),(17,98,83),(18,99,84),(19,100,85),(20,101,86),(21,102,87),(22,103,88),(23,104,89),(24,92,90),(25,93,91),(26,94,79),(27,43,73),(28,44,74),(29,45,75),(30,46,76),(31,47,77),(32,48,78),(33,49,66),(34,50,67),(35,51,68),(36,52,69),(37,40,70),(38,41,71),(39,42,72)]])

91 conjugacy classes

class 1  2 3A3B 4 6A6B13A···13L26A···26L39A···39X52A···52L78A···78X
order123346613···1326···2639···3952···5278···78
size11446441···11···14···46···64···4

91 irreducible representations

dim111122233
type+-+
imageC1C3C13C39SL2(𝔽3)SL2(𝔽3)C13×SL2(𝔽3)A4A4×C13
kernelC13×SL2(𝔽3)Q8×C13SL2(𝔽3)Q8C13C13C1C26C2
# reps1212241236112

Matrix representation of C13×SL2(𝔽3) in GL2(𝔽157) generated by

160
016
,
13145
145144
,
0156
10
,
10
145144
G:=sub<GL(2,GF(157))| [16,0,0,16],[13,145,145,144],[0,1,156,0],[1,145,0,144] >;

C13×SL2(𝔽3) in GAP, Magma, Sage, TeX

C_{13}\times {\rm SL}_2({\mathbb F}_3)
% in TeX

G:=Group("C13xSL(2,3)");
// GroupNames label

G:=SmallGroup(312,25);
// by ID

G=gap.SmallGroup(312,25);
# by ID

G:=PCGroup([5,-3,-13,-2,2,-2,1172,72,2343,133,58]);
// Polycyclic

G:=Group<a,b,c,d|a^13=b^4=d^3=1,c^2=b^2,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=b^-1,d*b*d^-1=c,d*c*d^-1=b*c>;
// generators/relations

Export

Subgroup lattice of C13×SL2(𝔽3) in TeX

׿
×
𝔽