Copied to
clipboard

G = C26.A4order 312 = 23·3·13

The non-split extension by C26 of A4 acting via A4/C22=C3

non-abelian, soluble

Aliases: C26.A4, C13⋊SL2(𝔽3), Q8⋊(C13⋊C3), C2.(C13⋊A4), (Q8×C13)⋊2C3, SmallGroup(312,26)

Series: Derived Chief Lower central Upper central

C1C2Q8×C13 — C26.A4
C1C2C26Q8×C13 — C26.A4
Q8×C13 — C26.A4
C1C2

Generators and relations for C26.A4
 G = < a,b,c,d | a26=d3=1, b2=c2=a13, ab=ba, ac=ca, dad-1=a9, cbc-1=a13b, dbd-1=a13bc, dcd-1=b >

52C3
3C4
52C6
4C13⋊C3
3C52
4C2×C13⋊C3
13SL2(𝔽3)

Character table of C26.A4

 class 123A3B46A6B13A13B13C13D26A26B26C26D52A52B52C52D52E52F52G52H52I52J52K52L
 size 1152526525233333333666666666666
ρ1111111111111111111111111111    trivial
ρ211ζ32ζ31ζ3ζ3211111111111111111111    linear of order 3
ρ311ζ3ζ321ζ32ζ311111111111111111111    linear of order 3
ρ42-2-1-10112222-2-2-2-2000000000000    symplectic lifted from SL2(𝔽3), Schur index 2
ρ52-2ζ65ζ60ζ32ζ32222-2-2-2-2000000000000    complex lifted from SL2(𝔽3)
ρ62-2ζ6ζ650ζ3ζ322222-2-2-2-2000000000000    complex lifted from SL2(𝔽3)
ρ73300-10033333333-1-1-1-1-1-1-1-1-1-1-1-1    orthogonal lifted from A4
ρ83300-100ζ13913313ζ136135132ζ13121310134ζ1311138137ζ13913313ζ136135132ζ1311138137ζ13121310134ζ13111381371311138137136135132136135132ζ13121310134ζ13913313ζ136135132139133131312131013413111381371312131013413913313    complex lifted from C13⋊A4
ρ93300300ζ136135132ζ13121310134ζ1311138137ζ13913313ζ136135132ζ13121310134ζ13913313ζ1311138137ζ13913313ζ13913313ζ13121310134ζ13121310134ζ1311138137ζ136135132ζ13121310134ζ136135132ζ1311138137ζ13913313ζ1311138137ζ136135132    complex lifted from C13⋊C3
ρ103300-100ζ136135132ζ13121310134ζ1311138137ζ13913313ζ136135132ζ13121310134ζ13913313ζ131113813713913313ζ1391331313121310134ζ13121310134131113813713613513213121310134136135132131113813713913313ζ1311138137ζ136135132    complex lifted from C13⋊A4
ρ113300300ζ13121310134ζ1311138137ζ13913313ζ136135132ζ13121310134ζ1311138137ζ136135132ζ13913313ζ136135132ζ136135132ζ1311138137ζ1311138137ζ13913313ζ13121310134ζ1311138137ζ13121310134ζ13913313ζ136135132ζ13913313ζ13121310134    complex lifted from C13⋊C3
ρ123300-100ζ1311138137ζ13913313ζ136135132ζ13121310134ζ1311138137ζ13913313ζ13121310134ζ136135132ζ1312131013413121310134ζ1391331313913313ζ136135132ζ1311138137139133131311138137136135132131213101341361351321311138137    complex lifted from C13⋊A4
ρ133300-100ζ13121310134ζ1311138137ζ13913313ζ136135132ζ13121310134ζ1311138137ζ136135132ζ13913313136135132ζ13613513213111381371311138137ζ1391331313121310134ζ1311138137ζ13121310134139133131361351321391331313121310134    complex lifted from C13⋊A4
ρ143300300ζ1311138137ζ13913313ζ136135132ζ13121310134ζ1311138137ζ13913313ζ13121310134ζ136135132ζ13121310134ζ13121310134ζ13913313ζ13913313ζ136135132ζ1311138137ζ13913313ζ1311138137ζ136135132ζ13121310134ζ136135132ζ1311138137    complex lifted from C13⋊C3
ρ153300-100ζ13913313ζ136135132ζ13121310134ζ1311138137ζ13913313ζ136135132ζ1311138137ζ1312131013413111381371311138137ζ136135132136135132131213101341391331313613513213913313ζ13121310134ζ131113813713121310134ζ13913313    complex lifted from C13⋊A4
ρ163300-100ζ136135132ζ13121310134ζ1311138137ζ13913313ζ136135132ζ13121310134ζ13913313ζ1311138137ζ13913313139133131312131013413121310134ζ1311138137136135132ζ13121310134ζ1361351321311138137139133131311138137136135132    complex lifted from C13⋊A4
ρ173300-100ζ136135132ζ13121310134ζ1311138137ζ13913313ζ136135132ζ13121310134ζ13913313ζ13111381371391331313913313ζ13121310134131213101341311138137ζ13613513213121310134136135132ζ1311138137ζ139133131311138137136135132    complex lifted from C13⋊A4
ρ183300-100ζ1311138137ζ13913313ζ136135132ζ13121310134ζ1311138137ζ13913313ζ13121310134ζ136135132131213101341312131013413913313ζ139133131361351321311138137139133131311138137ζ136135132ζ13121310134136135132ζ1311138137    complex lifted from C13⋊A4
ρ193300300ζ13913313ζ136135132ζ13121310134ζ1311138137ζ13913313ζ136135132ζ1311138137ζ13121310134ζ1311138137ζ1311138137ζ136135132ζ136135132ζ13121310134ζ13913313ζ136135132ζ13913313ζ13121310134ζ1311138137ζ13121310134ζ13913313    complex lifted from C13⋊C3
ρ203300-100ζ13121310134ζ1311138137ζ13913313ζ136135132ζ13121310134ζ1311138137ζ136135132ζ139133131361351321361351321311138137ζ1311138137139133131312131013413111381371312131013413913313ζ136135132ζ13913313ζ13121310134    complex lifted from C13⋊A4
ρ213300-100ζ13121310134ζ1311138137ζ13913313ζ136135132ζ13121310134ζ1311138137ζ136135132ζ13913313ζ136135132136135132ζ1311138137131113813713913313ζ13121310134131113813713121310134ζ139133131361351321391331313121310134    complex lifted from C13⋊A4
ρ223300-100ζ13913313ζ136135132ζ13121310134ζ1311138137ζ13913313ζ136135132ζ1311138137ζ131213101341311138137ζ1311138137136135132ζ1361351321312131013413913313136135132ζ13913313131213101341311138137ζ1312131013413913313    complex lifted from C13⋊A4
ρ233300-100ζ1311138137ζ13913313ζ136135132ζ13121310134ζ1311138137ζ13913313ζ13121310134ζ13613513213121310134ζ1312131013413913313139133131361351321311138137ζ13913313ζ131113813713613513213121310134ζ1361351321311138137    complex lifted from C13⋊A4
ρ246-600000136+2ζ135+2ζ1321312+2ζ1310+2ζ1341311+2ζ138+2ζ137139+2ζ133+2ζ13-2ζ136-2ζ135-2ζ132-2ζ1312-2ζ1310-2ζ134-2ζ139-2ζ133-2ζ13-2ζ1311-2ζ138-2ζ137000000000000    complex faithful
ρ256-6000001311+2ζ138+2ζ137139+2ζ133+2ζ13136+2ζ135+2ζ1321312+2ζ1310+2ζ134-2ζ1311-2ζ138-2ζ137-2ζ139-2ζ133-2ζ13-2ζ1312-2ζ1310-2ζ134-2ζ136-2ζ135-2ζ132000000000000    complex faithful
ρ266-600000139+2ζ133+2ζ13136+2ζ135+2ζ1321312+2ζ1310+2ζ1341311+2ζ138+2ζ137-2ζ139-2ζ133-2ζ13-2ζ136-2ζ135-2ζ132-2ζ1311-2ζ138-2ζ137-2ζ1312-2ζ1310-2ζ134000000000000    complex faithful
ρ276-6000001312+2ζ1310+2ζ1341311+2ζ138+2ζ137139+2ζ133+2ζ13136+2ζ135+2ζ132-2ζ1312-2ζ1310-2ζ134-2ζ1311-2ζ138-2ζ137-2ζ136-2ζ135-2ζ132-2ζ139-2ζ133-2ζ13000000000000    complex faithful

Smallest permutation representation of C26.A4
On 104 points
Generators in S104
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26)(27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52)(53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78)(79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104)
(1 53 14 66)(2 54 15 67)(3 55 16 68)(4 56 17 69)(5 57 18 70)(6 58 19 71)(7 59 20 72)(8 60 21 73)(9 61 22 74)(10 62 23 75)(11 63 24 76)(12 64 25 77)(13 65 26 78)(27 81 40 94)(28 82 41 95)(29 83 42 96)(30 84 43 97)(31 85 44 98)(32 86 45 99)(33 87 46 100)(34 88 47 101)(35 89 48 102)(36 90 49 103)(37 91 50 104)(38 92 51 79)(39 93 52 80)
(1 37 14 50)(2 38 15 51)(3 39 16 52)(4 40 17 27)(5 41 18 28)(6 42 19 29)(7 43 20 30)(8 44 21 31)(9 45 22 32)(10 46 23 33)(11 47 24 34)(12 48 25 35)(13 49 26 36)(53 104 66 91)(54 79 67 92)(55 80 68 93)(56 81 69 94)(57 82 70 95)(58 83 71 96)(59 84 72 97)(60 85 73 98)(61 86 74 99)(62 87 75 100)(63 88 76 101)(64 89 77 102)(65 90 78 103)
(2 4 10)(3 7 19)(5 13 11)(6 16 20)(8 22 12)(9 25 21)(15 17 23)(18 26 24)(27 87 67)(28 90 76)(29 93 59)(30 96 68)(31 99 77)(32 102 60)(33 79 69)(34 82 78)(35 85 61)(36 88 70)(37 91 53)(38 94 62)(39 97 71)(40 100 54)(41 103 63)(42 80 72)(43 83 55)(44 86 64)(45 89 73)(46 92 56)(47 95 65)(48 98 74)(49 101 57)(50 104 66)(51 81 75)(52 84 58)

G:=sub<Sym(104)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78)(79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104), (1,53,14,66)(2,54,15,67)(3,55,16,68)(4,56,17,69)(5,57,18,70)(6,58,19,71)(7,59,20,72)(8,60,21,73)(9,61,22,74)(10,62,23,75)(11,63,24,76)(12,64,25,77)(13,65,26,78)(27,81,40,94)(28,82,41,95)(29,83,42,96)(30,84,43,97)(31,85,44,98)(32,86,45,99)(33,87,46,100)(34,88,47,101)(35,89,48,102)(36,90,49,103)(37,91,50,104)(38,92,51,79)(39,93,52,80), (1,37,14,50)(2,38,15,51)(3,39,16,52)(4,40,17,27)(5,41,18,28)(6,42,19,29)(7,43,20,30)(8,44,21,31)(9,45,22,32)(10,46,23,33)(11,47,24,34)(12,48,25,35)(13,49,26,36)(53,104,66,91)(54,79,67,92)(55,80,68,93)(56,81,69,94)(57,82,70,95)(58,83,71,96)(59,84,72,97)(60,85,73,98)(61,86,74,99)(62,87,75,100)(63,88,76,101)(64,89,77,102)(65,90,78,103), (2,4,10)(3,7,19)(5,13,11)(6,16,20)(8,22,12)(9,25,21)(15,17,23)(18,26,24)(27,87,67)(28,90,76)(29,93,59)(30,96,68)(31,99,77)(32,102,60)(33,79,69)(34,82,78)(35,85,61)(36,88,70)(37,91,53)(38,94,62)(39,97,71)(40,100,54)(41,103,63)(42,80,72)(43,83,55)(44,86,64)(45,89,73)(46,92,56)(47,95,65)(48,98,74)(49,101,57)(50,104,66)(51,81,75)(52,84,58)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78)(79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104), (1,53,14,66)(2,54,15,67)(3,55,16,68)(4,56,17,69)(5,57,18,70)(6,58,19,71)(7,59,20,72)(8,60,21,73)(9,61,22,74)(10,62,23,75)(11,63,24,76)(12,64,25,77)(13,65,26,78)(27,81,40,94)(28,82,41,95)(29,83,42,96)(30,84,43,97)(31,85,44,98)(32,86,45,99)(33,87,46,100)(34,88,47,101)(35,89,48,102)(36,90,49,103)(37,91,50,104)(38,92,51,79)(39,93,52,80), (1,37,14,50)(2,38,15,51)(3,39,16,52)(4,40,17,27)(5,41,18,28)(6,42,19,29)(7,43,20,30)(8,44,21,31)(9,45,22,32)(10,46,23,33)(11,47,24,34)(12,48,25,35)(13,49,26,36)(53,104,66,91)(54,79,67,92)(55,80,68,93)(56,81,69,94)(57,82,70,95)(58,83,71,96)(59,84,72,97)(60,85,73,98)(61,86,74,99)(62,87,75,100)(63,88,76,101)(64,89,77,102)(65,90,78,103), (2,4,10)(3,7,19)(5,13,11)(6,16,20)(8,22,12)(9,25,21)(15,17,23)(18,26,24)(27,87,67)(28,90,76)(29,93,59)(30,96,68)(31,99,77)(32,102,60)(33,79,69)(34,82,78)(35,85,61)(36,88,70)(37,91,53)(38,94,62)(39,97,71)(40,100,54)(41,103,63)(42,80,72)(43,83,55)(44,86,64)(45,89,73)(46,92,56)(47,95,65)(48,98,74)(49,101,57)(50,104,66)(51,81,75)(52,84,58) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26),(27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52),(53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78),(79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104)], [(1,53,14,66),(2,54,15,67),(3,55,16,68),(4,56,17,69),(5,57,18,70),(6,58,19,71),(7,59,20,72),(8,60,21,73),(9,61,22,74),(10,62,23,75),(11,63,24,76),(12,64,25,77),(13,65,26,78),(27,81,40,94),(28,82,41,95),(29,83,42,96),(30,84,43,97),(31,85,44,98),(32,86,45,99),(33,87,46,100),(34,88,47,101),(35,89,48,102),(36,90,49,103),(37,91,50,104),(38,92,51,79),(39,93,52,80)], [(1,37,14,50),(2,38,15,51),(3,39,16,52),(4,40,17,27),(5,41,18,28),(6,42,19,29),(7,43,20,30),(8,44,21,31),(9,45,22,32),(10,46,23,33),(11,47,24,34),(12,48,25,35),(13,49,26,36),(53,104,66,91),(54,79,67,92),(55,80,68,93),(56,81,69,94),(57,82,70,95),(58,83,71,96),(59,84,72,97),(60,85,73,98),(61,86,74,99),(62,87,75,100),(63,88,76,101),(64,89,77,102),(65,90,78,103)], [(2,4,10),(3,7,19),(5,13,11),(6,16,20),(8,22,12),(9,25,21),(15,17,23),(18,26,24),(27,87,67),(28,90,76),(29,93,59),(30,96,68),(31,99,77),(32,102,60),(33,79,69),(34,82,78),(35,85,61),(36,88,70),(37,91,53),(38,94,62),(39,97,71),(40,100,54),(41,103,63),(42,80,72),(43,83,55),(44,86,64),(45,89,73),(46,92,56),(47,95,65),(48,98,74),(49,101,57),(50,104,66),(51,81,75),(52,84,58)]])

Matrix representation of C26.A4 in GL5(𝔽157)

1560000
0156000
0013414469
006982110
0011013446
,
132145000
2625000
007140139
0013914683
00838196
,
11000
155156000
0029156144
0014457126
001269070
,
11000
012000
00100
0011013446
00974722

G:=sub<GL(5,GF(157))| [156,0,0,0,0,0,156,0,0,0,0,0,134,69,110,0,0,144,82,134,0,0,69,110,46],[132,26,0,0,0,145,25,0,0,0,0,0,71,139,83,0,0,40,146,81,0,0,139,83,96],[1,155,0,0,0,1,156,0,0,0,0,0,29,144,126,0,0,156,57,90,0,0,144,126,70],[1,0,0,0,0,1,12,0,0,0,0,0,1,110,97,0,0,0,134,47,0,0,0,46,22] >;

C26.A4 in GAP, Magma, Sage, TeX

C_{26}.A_4
% in TeX

G:=Group("C26.A4");
// GroupNames label

G:=SmallGroup(312,26);
// by ID

G=gap.SmallGroup(312,26);
# by ID

G:=PCGroup([5,-3,-2,2,-13,-2,61,526,137,817,402,723]);
// Polycyclic

G:=Group<a,b,c,d|a^26=d^3=1,b^2=c^2=a^13,a*b=b*a,a*c=c*a,d*a*d^-1=a^9,c*b*c^-1=a^13*b,d*b*d^-1=a^13*b*c,d*c*d^-1=b>;
// generators/relations

Export

Subgroup lattice of C26.A4 in TeX
Character table of C26.A4 in TeX

׿
×
𝔽