Aliases: C26.A4, C13⋊SL2(𝔽3), Q8⋊(C13⋊C3), C2.(C13⋊A4), (Q8×C13)⋊2C3, SmallGroup(312,26)
Series: Derived ►Chief ►Lower central ►Upper central
Q8×C13 — C26.A4 |
Generators and relations for C26.A4
G = < a,b,c,d | a26=d3=1, b2=c2=a13, ab=ba, ac=ca, dad-1=a9, cbc-1=a13b, dbd-1=a13bc, dcd-1=b >
Character table of C26.A4
class | 1 | 2 | 3A | 3B | 4 | 6A | 6B | 13A | 13B | 13C | 13D | 26A | 26B | 26C | 26D | 52A | 52B | 52C | 52D | 52E | 52F | 52G | 52H | 52I | 52J | 52K | 52L | |
size | 1 | 1 | 52 | 52 | 6 | 52 | 52 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | ζ32 | ζ3 | 1 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 3 |
ρ3 | 1 | 1 | ζ3 | ζ32 | 1 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 3 |
ρ4 | 2 | -2 | -1 | -1 | 0 | 1 | 1 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from SL2(𝔽3), Schur index 2 |
ρ5 | 2 | -2 | ζ65 | ζ6 | 0 | ζ32 | ζ3 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from SL2(𝔽3) |
ρ6 | 2 | -2 | ζ6 | ζ65 | 0 | ζ3 | ζ32 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from SL2(𝔽3) |
ρ7 | 3 | 3 | 0 | 0 | -1 | 0 | 0 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from A4 |
ρ8 | 3 | 3 | 0 | 0 | -1 | 0 | 0 | ζ139+ζ133+ζ13 | ζ136+ζ135+ζ132 | ζ1312+ζ1310+ζ134 | ζ1311+ζ138+ζ137 | ζ139+ζ133+ζ13 | ζ136+ζ135+ζ132 | ζ1311+ζ138+ζ137 | ζ1312+ζ1310+ζ134 | ζ1311-ζ138-ζ137 | -ζ1311+ζ138-ζ137 | -ζ136+ζ135-ζ132 | -ζ136-ζ135+ζ132 | ζ1312-ζ1310-ζ134 | ζ139-ζ133-ζ13 | ζ136-ζ135-ζ132 | -ζ139+ζ133-ζ13 | -ζ1312+ζ1310-ζ134 | -ζ1311-ζ138+ζ137 | -ζ1312-ζ1310+ζ134 | -ζ139-ζ133+ζ13 | complex lifted from C13⋊A4 |
ρ9 | 3 | 3 | 0 | 0 | 3 | 0 | 0 | ζ136+ζ135+ζ132 | ζ1312+ζ1310+ζ134 | ζ1311+ζ138+ζ137 | ζ139+ζ133+ζ13 | ζ136+ζ135+ζ132 | ζ1312+ζ1310+ζ134 | ζ139+ζ133+ζ13 | ζ1311+ζ138+ζ137 | ζ139+ζ133+ζ13 | ζ139+ζ133+ζ13 | ζ1312+ζ1310+ζ134 | ζ1312+ζ1310+ζ134 | ζ1311+ζ138+ζ137 | ζ136+ζ135+ζ132 | ζ1312+ζ1310+ζ134 | ζ136+ζ135+ζ132 | ζ1311+ζ138+ζ137 | ζ139+ζ133+ζ13 | ζ1311+ζ138+ζ137 | ζ136+ζ135+ζ132 | complex lifted from C13⋊C3 |
ρ10 | 3 | 3 | 0 | 0 | -1 | 0 | 0 | ζ136+ζ135+ζ132 | ζ1312+ζ1310+ζ134 | ζ1311+ζ138+ζ137 | ζ139+ζ133+ζ13 | ζ136+ζ135+ζ132 | ζ1312+ζ1310+ζ134 | ζ139+ζ133+ζ13 | ζ1311+ζ138+ζ137 | -ζ139-ζ133+ζ13 | ζ139-ζ133-ζ13 | -ζ1312-ζ1310+ζ134 | ζ1312-ζ1310-ζ134 | -ζ1311-ζ138+ζ137 | -ζ136-ζ135+ζ132 | -ζ1312+ζ1310-ζ134 | -ζ136+ζ135-ζ132 | -ζ1311+ζ138-ζ137 | -ζ139+ζ133-ζ13 | ζ1311-ζ138-ζ137 | ζ136-ζ135-ζ132 | complex lifted from C13⋊A4 |
ρ11 | 3 | 3 | 0 | 0 | 3 | 0 | 0 | ζ1312+ζ1310+ζ134 | ζ1311+ζ138+ζ137 | ζ139+ζ133+ζ13 | ζ136+ζ135+ζ132 | ζ1312+ζ1310+ζ134 | ζ1311+ζ138+ζ137 | ζ136+ζ135+ζ132 | ζ139+ζ133+ζ13 | ζ136+ζ135+ζ132 | ζ136+ζ135+ζ132 | ζ1311+ζ138+ζ137 | ζ1311+ζ138+ζ137 | ζ139+ζ133+ζ13 | ζ1312+ζ1310+ζ134 | ζ1311+ζ138+ζ137 | ζ1312+ζ1310+ζ134 | ζ139+ζ133+ζ13 | ζ136+ζ135+ζ132 | ζ139+ζ133+ζ13 | ζ1312+ζ1310+ζ134 | complex lifted from C13⋊C3 |
ρ12 | 3 | 3 | 0 | 0 | -1 | 0 | 0 | ζ1311+ζ138+ζ137 | ζ139+ζ133+ζ13 | ζ136+ζ135+ζ132 | ζ1312+ζ1310+ζ134 | ζ1311+ζ138+ζ137 | ζ139+ζ133+ζ13 | ζ1312+ζ1310+ζ134 | ζ136+ζ135+ζ132 | ζ1312-ζ1310-ζ134 | -ζ1312-ζ1310+ζ134 | ζ139-ζ133-ζ13 | -ζ139-ζ133+ζ13 | ζ136-ζ135-ζ132 | ζ1311-ζ138-ζ137 | -ζ139+ζ133-ζ13 | -ζ1311+ζ138-ζ137 | -ζ136+ζ135-ζ132 | -ζ1312+ζ1310-ζ134 | -ζ136-ζ135+ζ132 | -ζ1311-ζ138+ζ137 | complex lifted from C13⋊A4 |
ρ13 | 3 | 3 | 0 | 0 | -1 | 0 | 0 | ζ1312+ζ1310+ζ134 | ζ1311+ζ138+ζ137 | ζ139+ζ133+ζ13 | ζ136+ζ135+ζ132 | ζ1312+ζ1310+ζ134 | ζ1311+ζ138+ζ137 | ζ136+ζ135+ζ132 | ζ139+ζ133+ζ13 | -ζ136+ζ135-ζ132 | ζ136-ζ135-ζ132 | -ζ1311-ζ138+ζ137 | -ζ1311+ζ138-ζ137 | ζ139-ζ133-ζ13 | -ζ1312+ζ1310-ζ134 | ζ1311-ζ138-ζ137 | ζ1312-ζ1310-ζ134 | -ζ139-ζ133+ζ13 | -ζ136-ζ135+ζ132 | -ζ139+ζ133-ζ13 | -ζ1312-ζ1310+ζ134 | complex lifted from C13⋊A4 |
ρ14 | 3 | 3 | 0 | 0 | 3 | 0 | 0 | ζ1311+ζ138+ζ137 | ζ139+ζ133+ζ13 | ζ136+ζ135+ζ132 | ζ1312+ζ1310+ζ134 | ζ1311+ζ138+ζ137 | ζ139+ζ133+ζ13 | ζ1312+ζ1310+ζ134 | ζ136+ζ135+ζ132 | ζ1312+ζ1310+ζ134 | ζ1312+ζ1310+ζ134 | ζ139+ζ133+ζ13 | ζ139+ζ133+ζ13 | ζ136+ζ135+ζ132 | ζ1311+ζ138+ζ137 | ζ139+ζ133+ζ13 | ζ1311+ζ138+ζ137 | ζ136+ζ135+ζ132 | ζ1312+ζ1310+ζ134 | ζ136+ζ135+ζ132 | ζ1311+ζ138+ζ137 | complex lifted from C13⋊C3 |
ρ15 | 3 | 3 | 0 | 0 | -1 | 0 | 0 | ζ139+ζ133+ζ13 | ζ136+ζ135+ζ132 | ζ1312+ζ1310+ζ134 | ζ1311+ζ138+ζ137 | ζ139+ζ133+ζ13 | ζ136+ζ135+ζ132 | ζ1311+ζ138+ζ137 | ζ1312+ζ1310+ζ134 | -ζ1311+ζ138-ζ137 | -ζ1311-ζ138+ζ137 | ζ136-ζ135-ζ132 | -ζ136+ζ135-ζ132 | -ζ1312-ζ1310+ζ134 | -ζ139+ζ133-ζ13 | -ζ136-ζ135+ζ132 | -ζ139-ζ133+ζ13 | ζ1312-ζ1310-ζ134 | ζ1311-ζ138-ζ137 | -ζ1312+ζ1310-ζ134 | ζ139-ζ133-ζ13 | complex lifted from C13⋊A4 |
ρ16 | 3 | 3 | 0 | 0 | -1 | 0 | 0 | ζ136+ζ135+ζ132 | ζ1312+ζ1310+ζ134 | ζ1311+ζ138+ζ137 | ζ139+ζ133+ζ13 | ζ136+ζ135+ζ132 | ζ1312+ζ1310+ζ134 | ζ139+ζ133+ζ13 | ζ1311+ζ138+ζ137 | ζ139-ζ133-ζ13 | -ζ139+ζ133-ζ13 | -ζ1312+ζ1310-ζ134 | -ζ1312-ζ1310+ζ134 | ζ1311-ζ138-ζ137 | -ζ136+ζ135-ζ132 | ζ1312-ζ1310-ζ134 | ζ136-ζ135-ζ132 | -ζ1311-ζ138+ζ137 | -ζ139-ζ133+ζ13 | -ζ1311+ζ138-ζ137 | -ζ136-ζ135+ζ132 | complex lifted from C13⋊A4 |
ρ17 | 3 | 3 | 0 | 0 | -1 | 0 | 0 | ζ136+ζ135+ζ132 | ζ1312+ζ1310+ζ134 | ζ1311+ζ138+ζ137 | ζ139+ζ133+ζ13 | ζ136+ζ135+ζ132 | ζ1312+ζ1310+ζ134 | ζ139+ζ133+ζ13 | ζ1311+ζ138+ζ137 | -ζ139+ζ133-ζ13 | -ζ139-ζ133+ζ13 | ζ1312-ζ1310-ζ134 | -ζ1312+ζ1310-ζ134 | -ζ1311+ζ138-ζ137 | ζ136-ζ135-ζ132 | -ζ1312-ζ1310+ζ134 | -ζ136-ζ135+ζ132 | ζ1311-ζ138-ζ137 | ζ139-ζ133-ζ13 | -ζ1311-ζ138+ζ137 | -ζ136+ζ135-ζ132 | complex lifted from C13⋊A4 |
ρ18 | 3 | 3 | 0 | 0 | -1 | 0 | 0 | ζ1311+ζ138+ζ137 | ζ139+ζ133+ζ13 | ζ136+ζ135+ζ132 | ζ1312+ζ1310+ζ134 | ζ1311+ζ138+ζ137 | ζ139+ζ133+ζ13 | ζ1312+ζ1310+ζ134 | ζ136+ζ135+ζ132 | -ζ1312-ζ1310+ζ134 | -ζ1312+ζ1310-ζ134 | -ζ139+ζ133-ζ13 | ζ139-ζ133-ζ13 | -ζ136-ζ135+ζ132 | -ζ1311+ζ138-ζ137 | -ζ139-ζ133+ζ13 | -ζ1311-ζ138+ζ137 | ζ136-ζ135-ζ132 | ζ1312-ζ1310-ζ134 | -ζ136+ζ135-ζ132 | ζ1311-ζ138-ζ137 | complex lifted from C13⋊A4 |
ρ19 | 3 | 3 | 0 | 0 | 3 | 0 | 0 | ζ139+ζ133+ζ13 | ζ136+ζ135+ζ132 | ζ1312+ζ1310+ζ134 | ζ1311+ζ138+ζ137 | ζ139+ζ133+ζ13 | ζ136+ζ135+ζ132 | ζ1311+ζ138+ζ137 | ζ1312+ζ1310+ζ134 | ζ1311+ζ138+ζ137 | ζ1311+ζ138+ζ137 | ζ136+ζ135+ζ132 | ζ136+ζ135+ζ132 | ζ1312+ζ1310+ζ134 | ζ139+ζ133+ζ13 | ζ136+ζ135+ζ132 | ζ139+ζ133+ζ13 | ζ1312+ζ1310+ζ134 | ζ1311+ζ138+ζ137 | ζ1312+ζ1310+ζ134 | ζ139+ζ133+ζ13 | complex lifted from C13⋊C3 |
ρ20 | 3 | 3 | 0 | 0 | -1 | 0 | 0 | ζ1312+ζ1310+ζ134 | ζ1311+ζ138+ζ137 | ζ139+ζ133+ζ13 | ζ136+ζ135+ζ132 | ζ1312+ζ1310+ζ134 | ζ1311+ζ138+ζ137 | ζ136+ζ135+ζ132 | ζ139+ζ133+ζ13 | -ζ136-ζ135+ζ132 | -ζ136+ζ135-ζ132 | -ζ1311+ζ138-ζ137 | ζ1311-ζ138-ζ137 | -ζ139-ζ133+ζ13 | -ζ1312-ζ1310+ζ134 | -ζ1311-ζ138+ζ137 | -ζ1312+ζ1310-ζ134 | -ζ139+ζ133-ζ13 | ζ136-ζ135-ζ132 | ζ139-ζ133-ζ13 | ζ1312-ζ1310-ζ134 | complex lifted from C13⋊A4 |
ρ21 | 3 | 3 | 0 | 0 | -1 | 0 | 0 | ζ1312+ζ1310+ζ134 | ζ1311+ζ138+ζ137 | ζ139+ζ133+ζ13 | ζ136+ζ135+ζ132 | ζ1312+ζ1310+ζ134 | ζ1311+ζ138+ζ137 | ζ136+ζ135+ζ132 | ζ139+ζ133+ζ13 | ζ136-ζ135-ζ132 | -ζ136-ζ135+ζ132 | ζ1311-ζ138-ζ137 | -ζ1311-ζ138+ζ137 | -ζ139+ζ133-ζ13 | ζ1312-ζ1310-ζ134 | -ζ1311+ζ138-ζ137 | -ζ1312-ζ1310+ζ134 | ζ139-ζ133-ζ13 | -ζ136+ζ135-ζ132 | -ζ139-ζ133+ζ13 | -ζ1312+ζ1310-ζ134 | complex lifted from C13⋊A4 |
ρ22 | 3 | 3 | 0 | 0 | -1 | 0 | 0 | ζ139+ζ133+ζ13 | ζ136+ζ135+ζ132 | ζ1312+ζ1310+ζ134 | ζ1311+ζ138+ζ137 | ζ139+ζ133+ζ13 | ζ136+ζ135+ζ132 | ζ1311+ζ138+ζ137 | ζ1312+ζ1310+ζ134 | -ζ1311-ζ138+ζ137 | ζ1311-ζ138-ζ137 | -ζ136-ζ135+ζ132 | ζ136-ζ135-ζ132 | -ζ1312+ζ1310-ζ134 | -ζ139-ζ133+ζ13 | -ζ136+ζ135-ζ132 | ζ139-ζ133-ζ13 | -ζ1312-ζ1310+ζ134 | -ζ1311+ζ138-ζ137 | ζ1312-ζ1310-ζ134 | -ζ139+ζ133-ζ13 | complex lifted from C13⋊A4 |
ρ23 | 3 | 3 | 0 | 0 | -1 | 0 | 0 | ζ1311+ζ138+ζ137 | ζ139+ζ133+ζ13 | ζ136+ζ135+ζ132 | ζ1312+ζ1310+ζ134 | ζ1311+ζ138+ζ137 | ζ139+ζ133+ζ13 | ζ1312+ζ1310+ζ134 | ζ136+ζ135+ζ132 | -ζ1312+ζ1310-ζ134 | ζ1312-ζ1310-ζ134 | -ζ139-ζ133+ζ13 | -ζ139+ζ133-ζ13 | -ζ136+ζ135-ζ132 | -ζ1311-ζ138+ζ137 | ζ139-ζ133-ζ13 | ζ1311-ζ138-ζ137 | -ζ136-ζ135+ζ132 | -ζ1312-ζ1310+ζ134 | ζ136-ζ135-ζ132 | -ζ1311+ζ138-ζ137 | complex lifted from C13⋊A4 |
ρ24 | 6 | -6 | 0 | 0 | 0 | 0 | 0 | 2ζ136+2ζ135+2ζ132 | 2ζ1312+2ζ1310+2ζ134 | 2ζ1311+2ζ138+2ζ137 | 2ζ139+2ζ133+2ζ13 | -2ζ136-2ζ135-2ζ132 | -2ζ1312-2ζ1310-2ζ134 | -2ζ139-2ζ133-2ζ13 | -2ζ1311-2ζ138-2ζ137 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ25 | 6 | -6 | 0 | 0 | 0 | 0 | 0 | 2ζ1311+2ζ138+2ζ137 | 2ζ139+2ζ133+2ζ13 | 2ζ136+2ζ135+2ζ132 | 2ζ1312+2ζ1310+2ζ134 | -2ζ1311-2ζ138-2ζ137 | -2ζ139-2ζ133-2ζ13 | -2ζ1312-2ζ1310-2ζ134 | -2ζ136-2ζ135-2ζ132 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ26 | 6 | -6 | 0 | 0 | 0 | 0 | 0 | 2ζ139+2ζ133+2ζ13 | 2ζ136+2ζ135+2ζ132 | 2ζ1312+2ζ1310+2ζ134 | 2ζ1311+2ζ138+2ζ137 | -2ζ139-2ζ133-2ζ13 | -2ζ136-2ζ135-2ζ132 | -2ζ1311-2ζ138-2ζ137 | -2ζ1312-2ζ1310-2ζ134 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ27 | 6 | -6 | 0 | 0 | 0 | 0 | 0 | 2ζ1312+2ζ1310+2ζ134 | 2ζ1311+2ζ138+2ζ137 | 2ζ139+2ζ133+2ζ13 | 2ζ136+2ζ135+2ζ132 | -2ζ1312-2ζ1310-2ζ134 | -2ζ1311-2ζ138-2ζ137 | -2ζ136-2ζ135-2ζ132 | -2ζ139-2ζ133-2ζ13 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26)(27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52)(53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78)(79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104)
(1 53 14 66)(2 54 15 67)(3 55 16 68)(4 56 17 69)(5 57 18 70)(6 58 19 71)(7 59 20 72)(8 60 21 73)(9 61 22 74)(10 62 23 75)(11 63 24 76)(12 64 25 77)(13 65 26 78)(27 81 40 94)(28 82 41 95)(29 83 42 96)(30 84 43 97)(31 85 44 98)(32 86 45 99)(33 87 46 100)(34 88 47 101)(35 89 48 102)(36 90 49 103)(37 91 50 104)(38 92 51 79)(39 93 52 80)
(1 37 14 50)(2 38 15 51)(3 39 16 52)(4 40 17 27)(5 41 18 28)(6 42 19 29)(7 43 20 30)(8 44 21 31)(9 45 22 32)(10 46 23 33)(11 47 24 34)(12 48 25 35)(13 49 26 36)(53 104 66 91)(54 79 67 92)(55 80 68 93)(56 81 69 94)(57 82 70 95)(58 83 71 96)(59 84 72 97)(60 85 73 98)(61 86 74 99)(62 87 75 100)(63 88 76 101)(64 89 77 102)(65 90 78 103)
(2 4 10)(3 7 19)(5 13 11)(6 16 20)(8 22 12)(9 25 21)(15 17 23)(18 26 24)(27 87 67)(28 90 76)(29 93 59)(30 96 68)(31 99 77)(32 102 60)(33 79 69)(34 82 78)(35 85 61)(36 88 70)(37 91 53)(38 94 62)(39 97 71)(40 100 54)(41 103 63)(42 80 72)(43 83 55)(44 86 64)(45 89 73)(46 92 56)(47 95 65)(48 98 74)(49 101 57)(50 104 66)(51 81 75)(52 84 58)
G:=sub<Sym(104)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78)(79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104), (1,53,14,66)(2,54,15,67)(3,55,16,68)(4,56,17,69)(5,57,18,70)(6,58,19,71)(7,59,20,72)(8,60,21,73)(9,61,22,74)(10,62,23,75)(11,63,24,76)(12,64,25,77)(13,65,26,78)(27,81,40,94)(28,82,41,95)(29,83,42,96)(30,84,43,97)(31,85,44,98)(32,86,45,99)(33,87,46,100)(34,88,47,101)(35,89,48,102)(36,90,49,103)(37,91,50,104)(38,92,51,79)(39,93,52,80), (1,37,14,50)(2,38,15,51)(3,39,16,52)(4,40,17,27)(5,41,18,28)(6,42,19,29)(7,43,20,30)(8,44,21,31)(9,45,22,32)(10,46,23,33)(11,47,24,34)(12,48,25,35)(13,49,26,36)(53,104,66,91)(54,79,67,92)(55,80,68,93)(56,81,69,94)(57,82,70,95)(58,83,71,96)(59,84,72,97)(60,85,73,98)(61,86,74,99)(62,87,75,100)(63,88,76,101)(64,89,77,102)(65,90,78,103), (2,4,10)(3,7,19)(5,13,11)(6,16,20)(8,22,12)(9,25,21)(15,17,23)(18,26,24)(27,87,67)(28,90,76)(29,93,59)(30,96,68)(31,99,77)(32,102,60)(33,79,69)(34,82,78)(35,85,61)(36,88,70)(37,91,53)(38,94,62)(39,97,71)(40,100,54)(41,103,63)(42,80,72)(43,83,55)(44,86,64)(45,89,73)(46,92,56)(47,95,65)(48,98,74)(49,101,57)(50,104,66)(51,81,75)(52,84,58)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78)(79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104), (1,53,14,66)(2,54,15,67)(3,55,16,68)(4,56,17,69)(5,57,18,70)(6,58,19,71)(7,59,20,72)(8,60,21,73)(9,61,22,74)(10,62,23,75)(11,63,24,76)(12,64,25,77)(13,65,26,78)(27,81,40,94)(28,82,41,95)(29,83,42,96)(30,84,43,97)(31,85,44,98)(32,86,45,99)(33,87,46,100)(34,88,47,101)(35,89,48,102)(36,90,49,103)(37,91,50,104)(38,92,51,79)(39,93,52,80), (1,37,14,50)(2,38,15,51)(3,39,16,52)(4,40,17,27)(5,41,18,28)(6,42,19,29)(7,43,20,30)(8,44,21,31)(9,45,22,32)(10,46,23,33)(11,47,24,34)(12,48,25,35)(13,49,26,36)(53,104,66,91)(54,79,67,92)(55,80,68,93)(56,81,69,94)(57,82,70,95)(58,83,71,96)(59,84,72,97)(60,85,73,98)(61,86,74,99)(62,87,75,100)(63,88,76,101)(64,89,77,102)(65,90,78,103), (2,4,10)(3,7,19)(5,13,11)(6,16,20)(8,22,12)(9,25,21)(15,17,23)(18,26,24)(27,87,67)(28,90,76)(29,93,59)(30,96,68)(31,99,77)(32,102,60)(33,79,69)(34,82,78)(35,85,61)(36,88,70)(37,91,53)(38,94,62)(39,97,71)(40,100,54)(41,103,63)(42,80,72)(43,83,55)(44,86,64)(45,89,73)(46,92,56)(47,95,65)(48,98,74)(49,101,57)(50,104,66)(51,81,75)(52,84,58) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26),(27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52),(53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78),(79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104)], [(1,53,14,66),(2,54,15,67),(3,55,16,68),(4,56,17,69),(5,57,18,70),(6,58,19,71),(7,59,20,72),(8,60,21,73),(9,61,22,74),(10,62,23,75),(11,63,24,76),(12,64,25,77),(13,65,26,78),(27,81,40,94),(28,82,41,95),(29,83,42,96),(30,84,43,97),(31,85,44,98),(32,86,45,99),(33,87,46,100),(34,88,47,101),(35,89,48,102),(36,90,49,103),(37,91,50,104),(38,92,51,79),(39,93,52,80)], [(1,37,14,50),(2,38,15,51),(3,39,16,52),(4,40,17,27),(5,41,18,28),(6,42,19,29),(7,43,20,30),(8,44,21,31),(9,45,22,32),(10,46,23,33),(11,47,24,34),(12,48,25,35),(13,49,26,36),(53,104,66,91),(54,79,67,92),(55,80,68,93),(56,81,69,94),(57,82,70,95),(58,83,71,96),(59,84,72,97),(60,85,73,98),(61,86,74,99),(62,87,75,100),(63,88,76,101),(64,89,77,102),(65,90,78,103)], [(2,4,10),(3,7,19),(5,13,11),(6,16,20),(8,22,12),(9,25,21),(15,17,23),(18,26,24),(27,87,67),(28,90,76),(29,93,59),(30,96,68),(31,99,77),(32,102,60),(33,79,69),(34,82,78),(35,85,61),(36,88,70),(37,91,53),(38,94,62),(39,97,71),(40,100,54),(41,103,63),(42,80,72),(43,83,55),(44,86,64),(45,89,73),(46,92,56),(47,95,65),(48,98,74),(49,101,57),(50,104,66),(51,81,75),(52,84,58)]])
Matrix representation of C26.A4 ►in GL5(𝔽157)
156 | 0 | 0 | 0 | 0 |
0 | 156 | 0 | 0 | 0 |
0 | 0 | 134 | 144 | 69 |
0 | 0 | 69 | 82 | 110 |
0 | 0 | 110 | 134 | 46 |
132 | 145 | 0 | 0 | 0 |
26 | 25 | 0 | 0 | 0 |
0 | 0 | 71 | 40 | 139 |
0 | 0 | 139 | 146 | 83 |
0 | 0 | 83 | 81 | 96 |
1 | 1 | 0 | 0 | 0 |
155 | 156 | 0 | 0 | 0 |
0 | 0 | 29 | 156 | 144 |
0 | 0 | 144 | 57 | 126 |
0 | 0 | 126 | 90 | 70 |
1 | 1 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 110 | 134 | 46 |
0 | 0 | 97 | 47 | 22 |
G:=sub<GL(5,GF(157))| [156,0,0,0,0,0,156,0,0,0,0,0,134,69,110,0,0,144,82,134,0,0,69,110,46],[132,26,0,0,0,145,25,0,0,0,0,0,71,139,83,0,0,40,146,81,0,0,139,83,96],[1,155,0,0,0,1,156,0,0,0,0,0,29,144,126,0,0,156,57,90,0,0,144,126,70],[1,0,0,0,0,1,12,0,0,0,0,0,1,110,97,0,0,0,134,47,0,0,0,46,22] >;
C26.A4 in GAP, Magma, Sage, TeX
C_{26}.A_4
% in TeX
G:=Group("C26.A4");
// GroupNames label
G:=SmallGroup(312,26);
// by ID
G=gap.SmallGroup(312,26);
# by ID
G:=PCGroup([5,-3,-2,2,-13,-2,61,526,137,817,402,723]);
// Polycyclic
G:=Group<a,b,c,d|a^26=d^3=1,b^2=c^2=a^13,a*b=b*a,a*c=c*a,d*a*d^-1=a^9,c*b*c^-1=a^13*b,d*b*d^-1=a^13*b*c,d*c*d^-1=b>;
// generators/relations
Export
Subgroup lattice of C26.A4 in TeX
Character table of C26.A4 in TeX