Copied to
clipboard

G = C14×C7⋊C3order 294 = 2·3·72

Direct product of C14 and C7⋊C3

direct product, metacyclic, supersoluble, monomial, A-group

Aliases: C14×C7⋊C3, C14⋊C21, C72C42, C728C6, (C7×C14)⋊1C3, SmallGroup(294,15)

Series: Derived Chief Lower central Upper central

C1C7 — C14×C7⋊C3
C1C7C72C7×C7⋊C3 — C14×C7⋊C3
C7 — C14×C7⋊C3
C1C14

Generators and relations for C14×C7⋊C3
 G = < a,b,c | a14=b7=c3=1, ab=ba, ac=ca, cbc-1=b4 >

7C3
3C7
3C7
7C6
3C14
3C14
7C21
7C42

Smallest permutation representation of C14×C7⋊C3
On 42 points
Generators in S42
(1 2 3 4 5 6 7 8 9 10 11 12 13 14)(15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42)
(1 3 5 7 9 11 13)(2 4 6 8 10 12 14)(15 19 23 27 17 21 25)(16 20 24 28 18 22 26)(29 37 31 39 33 41 35)(30 38 32 40 34 42 36)
(1 30 16)(2 31 17)(3 32 18)(4 33 19)(5 34 20)(6 35 21)(7 36 22)(8 37 23)(9 38 24)(10 39 25)(11 40 26)(12 41 27)(13 42 28)(14 29 15)

G:=sub<Sym(42)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42), (1,3,5,7,9,11,13)(2,4,6,8,10,12,14)(15,19,23,27,17,21,25)(16,20,24,28,18,22,26)(29,37,31,39,33,41,35)(30,38,32,40,34,42,36), (1,30,16)(2,31,17)(3,32,18)(4,33,19)(5,34,20)(6,35,21)(7,36,22)(8,37,23)(9,38,24)(10,39,25)(11,40,26)(12,41,27)(13,42,28)(14,29,15)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42), (1,3,5,7,9,11,13)(2,4,6,8,10,12,14)(15,19,23,27,17,21,25)(16,20,24,28,18,22,26)(29,37,31,39,33,41,35)(30,38,32,40,34,42,36), (1,30,16)(2,31,17)(3,32,18)(4,33,19)(5,34,20)(6,35,21)(7,36,22)(8,37,23)(9,38,24)(10,39,25)(11,40,26)(12,41,27)(13,42,28)(14,29,15) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14),(15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42)], [(1,3,5,7,9,11,13),(2,4,6,8,10,12,14),(15,19,23,27,17,21,25),(16,20,24,28,18,22,26),(29,37,31,39,33,41,35),(30,38,32,40,34,42,36)], [(1,30,16),(2,31,17),(3,32,18),(4,33,19),(5,34,20),(6,35,21),(7,36,22),(8,37,23),(9,38,24),(10,39,25),(11,40,26),(12,41,27),(13,42,28),(14,29,15)]])

70 conjugacy classes

class 1  2 3A3B6A6B7A···7F7G···7T14A···14F14G···14T21A···21L42A···42L
order1233667···77···714···1414···1421···2142···42
size1177771···13···31···13···37···77···7

70 irreducible representations

dim111111113333
type++
imageC1C2C3C6C7C14C21C42C7⋊C3C2×C7⋊C3C7×C7⋊C3C14×C7⋊C3
kernelC14×C7⋊C3C7×C7⋊C3C7×C14C72C2×C7⋊C3C7⋊C3C14C7C14C7C2C1
# reps1122661212221212

Matrix representation of C14×C7⋊C3 in GL3(𝔽43) generated by

2200
0220
0022
,
1196
0350
0021
,
600
001
10737
G:=sub<GL(3,GF(43))| [22,0,0,0,22,0,0,0,22],[11,0,0,9,35,0,6,0,21],[6,0,10,0,0,7,0,1,37] >;

C14×C7⋊C3 in GAP, Magma, Sage, TeX

C_{14}\times C_7\rtimes C_3
% in TeX

G:=Group("C14xC7:C3");
// GroupNames label

G:=SmallGroup(294,15);
// by ID

G=gap.SmallGroup(294,15);
# by ID

G:=PCGroup([4,-2,-3,-7,-7,679]);
// Polycyclic

G:=Group<a,b,c|a^14=b^7=c^3=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^4>;
// generators/relations

Export

Subgroup lattice of C14×C7⋊C3 in TeX

׿
×
𝔽