direct product, metacyclic, supersoluble, monomial, Z-group, 5-hyperelementary
Aliases: C2×C31⋊C5, C62⋊C5, C31⋊2C10, SmallGroup(310,2)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C31 — C31⋊C5 — C2×C31⋊C5 |
C31 — C2×C31⋊C5 |
Generators and relations for C2×C31⋊C5
G = < a,b,c | a2=b31=c5=1, ab=ba, ac=ca, cbc-1=b2 >
Character table of C2×C31⋊C5
class | 1 | 2 | 5A | 5B | 5C | 5D | 10A | 10B | 10C | 10D | 31A | 31B | 31C | 31D | 31E | 31F | 62A | 62B | 62C | 62D | 62E | 62F | |
size | 1 | 1 | 31 | 31 | 31 | 31 | 31 | 31 | 31 | 31 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | -1 | ζ53 | ζ52 | ζ54 | ζ5 | -ζ53 | -ζ52 | -ζ54 | -ζ5 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 10 |
ρ4 | 1 | 1 | ζ53 | ζ52 | ζ54 | ζ5 | ζ53 | ζ52 | ζ54 | ζ5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 5 |
ρ5 | 1 | -1 | ζ52 | ζ53 | ζ5 | ζ54 | -ζ52 | -ζ53 | -ζ5 | -ζ54 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 10 |
ρ6 | 1 | -1 | ζ5 | ζ54 | ζ53 | ζ52 | -ζ5 | -ζ54 | -ζ53 | -ζ52 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 10 |
ρ7 | 1 | 1 | ζ54 | ζ5 | ζ52 | ζ53 | ζ54 | ζ5 | ζ52 | ζ53 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 5 |
ρ8 | 1 | 1 | ζ52 | ζ53 | ζ5 | ζ54 | ζ52 | ζ53 | ζ5 | ζ54 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 5 |
ρ9 | 1 | 1 | ζ5 | ζ54 | ζ53 | ζ52 | ζ5 | ζ54 | ζ53 | ζ52 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 5 |
ρ10 | 1 | -1 | ζ54 | ζ5 | ζ52 | ζ53 | -ζ54 | -ζ5 | -ζ52 | -ζ53 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 10 |
ρ11 | 5 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ3120+ζ3118+ζ3110+ζ319+ζ315 | ζ3124+ζ3117+ζ3112+ζ316+ζ313 | ζ3130+ζ3129+ζ3127+ζ3123+ζ3115 | ζ3126+ζ3122+ζ3121+ζ3113+ζ3111 | ζ3116+ζ318+ζ314+ζ312+ζ31 | ζ3128+ζ3125+ζ3119+ζ3114+ζ317 | ζ3116+ζ318+ζ314+ζ312+ζ31 | ζ3128+ζ3125+ζ3119+ζ3114+ζ317 | ζ3124+ζ3117+ζ3112+ζ316+ζ313 | ζ3120+ζ3118+ζ3110+ζ319+ζ315 | ζ3130+ζ3129+ζ3127+ζ3123+ζ3115 | ζ3126+ζ3122+ζ3121+ζ3113+ζ3111 | complex lifted from C31⋊C5 |
ρ12 | 5 | -5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ3126+ζ3122+ζ3121+ζ3113+ζ3111 | ζ3128+ζ3125+ζ3119+ζ3114+ζ317 | ζ3116+ζ318+ζ314+ζ312+ζ31 | ζ3120+ζ3118+ζ3110+ζ319+ζ315 | ζ3130+ζ3129+ζ3127+ζ3123+ζ3115 | ζ3124+ζ3117+ζ3112+ζ316+ζ313 | -ζ3130-ζ3129-ζ3127-ζ3123-ζ3115 | -ζ3124-ζ3117-ζ3112-ζ316-ζ313 | -ζ3128-ζ3125-ζ3119-ζ3114-ζ317 | -ζ3126-ζ3122-ζ3121-ζ3113-ζ3111 | -ζ3116-ζ318-ζ314-ζ312-ζ31 | -ζ3120-ζ3118-ζ3110-ζ319-ζ315 | complex faithful |
ρ13 | 5 | -5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ3120+ζ3118+ζ3110+ζ319+ζ315 | ζ3124+ζ3117+ζ3112+ζ316+ζ313 | ζ3130+ζ3129+ζ3127+ζ3123+ζ3115 | ζ3126+ζ3122+ζ3121+ζ3113+ζ3111 | ζ3116+ζ318+ζ314+ζ312+ζ31 | ζ3128+ζ3125+ζ3119+ζ3114+ζ317 | -ζ3116-ζ318-ζ314-ζ312-ζ31 | -ζ3128-ζ3125-ζ3119-ζ3114-ζ317 | -ζ3124-ζ3117-ζ3112-ζ316-ζ313 | -ζ3120-ζ3118-ζ3110-ζ319-ζ315 | -ζ3130-ζ3129-ζ3127-ζ3123-ζ3115 | -ζ3126-ζ3122-ζ3121-ζ3113-ζ3111 | complex faithful |
ρ14 | 5 | -5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ3116+ζ318+ζ314+ζ312+ζ31 | ζ3126+ζ3122+ζ3121+ζ3113+ζ3111 | ζ3124+ζ3117+ζ3112+ζ316+ζ313 | ζ3130+ζ3129+ζ3127+ζ3123+ζ3115 | ζ3128+ζ3125+ζ3119+ζ3114+ζ317 | ζ3120+ζ3118+ζ3110+ζ319+ζ315 | -ζ3128-ζ3125-ζ3119-ζ3114-ζ317 | -ζ3120-ζ3118-ζ3110-ζ319-ζ315 | -ζ3126-ζ3122-ζ3121-ζ3113-ζ3111 | -ζ3116-ζ318-ζ314-ζ312-ζ31 | -ζ3124-ζ3117-ζ3112-ζ316-ζ313 | -ζ3130-ζ3129-ζ3127-ζ3123-ζ3115 | complex faithful |
ρ15 | 5 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ3130+ζ3129+ζ3127+ζ3123+ζ3115 | ζ3120+ζ3118+ζ3110+ζ319+ζ315 | ζ3128+ζ3125+ζ3119+ζ3114+ζ317 | ζ3116+ζ318+ζ314+ζ312+ζ31 | ζ3124+ζ3117+ζ3112+ζ316+ζ313 | ζ3126+ζ3122+ζ3121+ζ3113+ζ3111 | ζ3124+ζ3117+ζ3112+ζ316+ζ313 | ζ3126+ζ3122+ζ3121+ζ3113+ζ3111 | ζ3120+ζ3118+ζ3110+ζ319+ζ315 | ζ3130+ζ3129+ζ3127+ζ3123+ζ3115 | ζ3128+ζ3125+ζ3119+ζ3114+ζ317 | ζ3116+ζ318+ζ314+ζ312+ζ31 | complex lifted from C31⋊C5 |
ρ16 | 5 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ3124+ζ3117+ζ3112+ζ316+ζ313 | ζ3116+ζ318+ζ314+ζ312+ζ31 | ζ3120+ζ3118+ζ3110+ζ319+ζ315 | ζ3128+ζ3125+ζ3119+ζ3114+ζ317 | ζ3126+ζ3122+ζ3121+ζ3113+ζ3111 | ζ3130+ζ3129+ζ3127+ζ3123+ζ3115 | ζ3126+ζ3122+ζ3121+ζ3113+ζ3111 | ζ3130+ζ3129+ζ3127+ζ3123+ζ3115 | ζ3116+ζ318+ζ314+ζ312+ζ31 | ζ3124+ζ3117+ζ3112+ζ316+ζ313 | ζ3120+ζ3118+ζ3110+ζ319+ζ315 | ζ3128+ζ3125+ζ3119+ζ3114+ζ317 | complex lifted from C31⋊C5 |
ρ17 | 5 | -5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ3124+ζ3117+ζ3112+ζ316+ζ313 | ζ3116+ζ318+ζ314+ζ312+ζ31 | ζ3120+ζ3118+ζ3110+ζ319+ζ315 | ζ3128+ζ3125+ζ3119+ζ3114+ζ317 | ζ3126+ζ3122+ζ3121+ζ3113+ζ3111 | ζ3130+ζ3129+ζ3127+ζ3123+ζ3115 | -ζ3126-ζ3122-ζ3121-ζ3113-ζ3111 | -ζ3130-ζ3129-ζ3127-ζ3123-ζ3115 | -ζ3116-ζ318-ζ314-ζ312-ζ31 | -ζ3124-ζ3117-ζ3112-ζ316-ζ313 | -ζ3120-ζ3118-ζ3110-ζ319-ζ315 | -ζ3128-ζ3125-ζ3119-ζ3114-ζ317 | complex faithful |
ρ18 | 5 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ3128+ζ3125+ζ3119+ζ3114+ζ317 | ζ3130+ζ3129+ζ3127+ζ3123+ζ3115 | ζ3126+ζ3122+ζ3121+ζ3113+ζ3111 | ζ3124+ζ3117+ζ3112+ζ316+ζ313 | ζ3120+ζ3118+ζ3110+ζ319+ζ315 | ζ3116+ζ318+ζ314+ζ312+ζ31 | ζ3120+ζ3118+ζ3110+ζ319+ζ315 | ζ3116+ζ318+ζ314+ζ312+ζ31 | ζ3130+ζ3129+ζ3127+ζ3123+ζ3115 | ζ3128+ζ3125+ζ3119+ζ3114+ζ317 | ζ3126+ζ3122+ζ3121+ζ3113+ζ3111 | ζ3124+ζ3117+ζ3112+ζ316+ζ313 | complex lifted from C31⋊C5 |
ρ19 | 5 | -5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ3130+ζ3129+ζ3127+ζ3123+ζ3115 | ζ3120+ζ3118+ζ3110+ζ319+ζ315 | ζ3128+ζ3125+ζ3119+ζ3114+ζ317 | ζ3116+ζ318+ζ314+ζ312+ζ31 | ζ3124+ζ3117+ζ3112+ζ316+ζ313 | ζ3126+ζ3122+ζ3121+ζ3113+ζ3111 | -ζ3124-ζ3117-ζ3112-ζ316-ζ313 | -ζ3126-ζ3122-ζ3121-ζ3113-ζ3111 | -ζ3120-ζ3118-ζ3110-ζ319-ζ315 | -ζ3130-ζ3129-ζ3127-ζ3123-ζ3115 | -ζ3128-ζ3125-ζ3119-ζ3114-ζ317 | -ζ3116-ζ318-ζ314-ζ312-ζ31 | complex faithful |
ρ20 | 5 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ3126+ζ3122+ζ3121+ζ3113+ζ3111 | ζ3128+ζ3125+ζ3119+ζ3114+ζ317 | ζ3116+ζ318+ζ314+ζ312+ζ31 | ζ3120+ζ3118+ζ3110+ζ319+ζ315 | ζ3130+ζ3129+ζ3127+ζ3123+ζ3115 | ζ3124+ζ3117+ζ3112+ζ316+ζ313 | ζ3130+ζ3129+ζ3127+ζ3123+ζ3115 | ζ3124+ζ3117+ζ3112+ζ316+ζ313 | ζ3128+ζ3125+ζ3119+ζ3114+ζ317 | ζ3126+ζ3122+ζ3121+ζ3113+ζ3111 | ζ3116+ζ318+ζ314+ζ312+ζ31 | ζ3120+ζ3118+ζ3110+ζ319+ζ315 | complex lifted from C31⋊C5 |
ρ21 | 5 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ3116+ζ318+ζ314+ζ312+ζ31 | ζ3126+ζ3122+ζ3121+ζ3113+ζ3111 | ζ3124+ζ3117+ζ3112+ζ316+ζ313 | ζ3130+ζ3129+ζ3127+ζ3123+ζ3115 | ζ3128+ζ3125+ζ3119+ζ3114+ζ317 | ζ3120+ζ3118+ζ3110+ζ319+ζ315 | ζ3128+ζ3125+ζ3119+ζ3114+ζ317 | ζ3120+ζ3118+ζ3110+ζ319+ζ315 | ζ3126+ζ3122+ζ3121+ζ3113+ζ3111 | ζ3116+ζ318+ζ314+ζ312+ζ31 | ζ3124+ζ3117+ζ3112+ζ316+ζ313 | ζ3130+ζ3129+ζ3127+ζ3123+ζ3115 | complex lifted from C31⋊C5 |
ρ22 | 5 | -5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ3128+ζ3125+ζ3119+ζ3114+ζ317 | ζ3130+ζ3129+ζ3127+ζ3123+ζ3115 | ζ3126+ζ3122+ζ3121+ζ3113+ζ3111 | ζ3124+ζ3117+ζ3112+ζ316+ζ313 | ζ3120+ζ3118+ζ3110+ζ319+ζ315 | ζ3116+ζ318+ζ314+ζ312+ζ31 | -ζ3120-ζ3118-ζ3110-ζ319-ζ315 | -ζ3116-ζ318-ζ314-ζ312-ζ31 | -ζ3130-ζ3129-ζ3127-ζ3123-ζ3115 | -ζ3128-ζ3125-ζ3119-ζ3114-ζ317 | -ζ3126-ζ3122-ζ3121-ζ3113-ζ3111 | -ζ3124-ζ3117-ζ3112-ζ316-ζ313 | complex faithful |
(1 32)(2 33)(3 34)(4 35)(5 36)(6 37)(7 38)(8 39)(9 40)(10 41)(11 42)(12 43)(13 44)(14 45)(15 46)(16 47)(17 48)(18 49)(19 50)(20 51)(21 52)(22 53)(23 54)(24 55)(25 56)(26 57)(27 58)(28 59)(29 60)(30 61)(31 62)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31)(32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62)
(2 17 9 5 3)(4 18 25 13 7)(6 19 10 21 11)(8 20 26 29 15)(12 22 27 14 23)(16 24 28 30 31)(33 48 40 36 34)(35 49 56 44 38)(37 50 41 52 42)(39 51 57 60 46)(43 53 58 45 54)(47 55 59 61 62)
G:=sub<Sym(62)| (1,32)(2,33)(3,34)(4,35)(5,36)(6,37)(7,38)(8,39)(9,40)(10,41)(11,42)(12,43)(13,44)(14,45)(15,46)(16,47)(17,48)(18,49)(19,50)(20,51)(21,52)(22,53)(23,54)(24,55)(25,56)(26,57)(27,58)(28,59)(29,60)(30,61)(31,62), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31)(32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62), (2,17,9,5,3)(4,18,25,13,7)(6,19,10,21,11)(8,20,26,29,15)(12,22,27,14,23)(16,24,28,30,31)(33,48,40,36,34)(35,49,56,44,38)(37,50,41,52,42)(39,51,57,60,46)(43,53,58,45,54)(47,55,59,61,62)>;
G:=Group( (1,32)(2,33)(3,34)(4,35)(5,36)(6,37)(7,38)(8,39)(9,40)(10,41)(11,42)(12,43)(13,44)(14,45)(15,46)(16,47)(17,48)(18,49)(19,50)(20,51)(21,52)(22,53)(23,54)(24,55)(25,56)(26,57)(27,58)(28,59)(29,60)(30,61)(31,62), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31)(32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62), (2,17,9,5,3)(4,18,25,13,7)(6,19,10,21,11)(8,20,26,29,15)(12,22,27,14,23)(16,24,28,30,31)(33,48,40,36,34)(35,49,56,44,38)(37,50,41,52,42)(39,51,57,60,46)(43,53,58,45,54)(47,55,59,61,62) );
G=PermutationGroup([[(1,32),(2,33),(3,34),(4,35),(5,36),(6,37),(7,38),(8,39),(9,40),(10,41),(11,42),(12,43),(13,44),(14,45),(15,46),(16,47),(17,48),(18,49),(19,50),(20,51),(21,52),(22,53),(23,54),(24,55),(25,56),(26,57),(27,58),(28,59),(29,60),(30,61),(31,62)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31),(32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62)], [(2,17,9,5,3),(4,18,25,13,7),(6,19,10,21,11),(8,20,26,29,15),(12,22,27,14,23),(16,24,28,30,31),(33,48,40,36,34),(35,49,56,44,38),(37,50,41,52,42),(39,51,57,60,46),(43,53,58,45,54),(47,55,59,61,62)]])
Matrix representation of C2×C31⋊C5 ►in GL6(𝔽311)
310 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 35 | 27 | 88 | 97 | 1 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
52 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 214 | 286 | 96 | 112 | 302 |
0 | 52 | 37 | 58 | 307 | 198 |
G:=sub<GL(6,GF(311))| [310,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,35,1,0,0,0,0,27,0,1,0,0,0,88,0,0,1,0,0,97,0,0,0,1,0,1,0,0,0,0],[52,0,0,0,0,0,0,1,0,0,214,52,0,0,0,0,286,37,0,0,1,0,96,58,0,0,0,0,112,307,0,0,0,1,302,198] >;
C2×C31⋊C5 in GAP, Magma, Sage, TeX
C_2\times C_{31}\rtimes C_5
% in TeX
G:=Group("C2xC31:C5");
// GroupNames label
G:=SmallGroup(310,2);
// by ID
G=gap.SmallGroup(310,2);
# by ID
G:=PCGroup([3,-2,-5,-31,725]);
// Polycyclic
G:=Group<a,b,c|a^2=b^31=c^5=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^2>;
// generators/relations
Export
Subgroup lattice of C2×C31⋊C5 in TeX
Character table of C2×C31⋊C5 in TeX