Copied to
clipboard

G = C2×C31⋊C5order 310 = 2·5·31

Direct product of C2 and C31⋊C5

direct product, metacyclic, supersoluble, monomial, Z-group, 5-hyperelementary

Aliases: C2×C31⋊C5, C62⋊C5, C312C10, SmallGroup(310,2)

Series: Derived Chief Lower central Upper central

C1C31 — C2×C31⋊C5
C1C31C31⋊C5 — C2×C31⋊C5
C31 — C2×C31⋊C5
C1C2

Generators and relations for C2×C31⋊C5
 G = < a,b,c | a2=b31=c5=1, ab=ba, ac=ca, cbc-1=b2 >

31C5
31C10

Character table of C2×C31⋊C5

 class 125A5B5C5D10A10B10C10D31A31B31C31D31E31F62A62B62C62D62E62F
 size 113131313131313131555555555555
ρ11111111111111111111111    trivial
ρ21-11111-1-1-1-1111111-1-1-1-1-1-1    linear of order 2
ρ31-1ζ53ζ52ζ54ζ55352545111111-1-1-1-1-1-1    linear of order 10
ρ411ζ53ζ52ζ54ζ5ζ53ζ52ζ54ζ5111111111111    linear of order 5
ρ51-1ζ52ζ53ζ5ζ545253554111111-1-1-1-1-1-1    linear of order 10
ρ61-1ζ5ζ54ζ53ζ525545352111111-1-1-1-1-1-1    linear of order 10
ρ711ζ54ζ5ζ52ζ53ζ54ζ5ζ52ζ53111111111111    linear of order 5
ρ811ζ52ζ53ζ5ζ54ζ52ζ53ζ5ζ54111111111111    linear of order 5
ρ911ζ5ζ54ζ53ζ52ζ5ζ54ζ53ζ52111111111111    linear of order 5
ρ101-1ζ54ζ5ζ52ζ535455253111111-1-1-1-1-1-1    linear of order 10
ρ115500000000ζ312031183110319315ζ312431173112316313ζ31303129312731233115ζ31263122312131133111ζ311631831431231ζ3128312531193114317ζ311631831431231ζ3128312531193114317ζ312431173112316313ζ312031183110319315ζ31303129312731233115ζ31263122312131133111    complex lifted from C31⋊C5
ρ125-500000000ζ31263122312131133111ζ3128312531193114317ζ311631831431231ζ312031183110319315ζ31303129312731233115ζ31243117311231631331303129312731233115312431173112316313312831253119311431731263122312131133111311631831431231312031183110319315    complex faithful
ρ135-500000000ζ312031183110319315ζ312431173112316313ζ31303129312731233115ζ31263122312131133111ζ311631831431231ζ312831253119311431731163183143123131283125311931143173124311731123163133120311831103193153130312931273123311531263122312131133111    complex faithful
ρ145-500000000ζ311631831431231ζ31263122312131133111ζ312431173112316313ζ31303129312731233115ζ3128312531193114317ζ31203118311031931531283125311931143173120311831103193153126312231213113311131163183143123131243117311231631331303129312731233115    complex faithful
ρ155500000000ζ31303129312731233115ζ312031183110319315ζ3128312531193114317ζ311631831431231ζ312431173112316313ζ31263122312131133111ζ312431173112316313ζ31263122312131133111ζ312031183110319315ζ31303129312731233115ζ3128312531193114317ζ311631831431231    complex lifted from C31⋊C5
ρ165500000000ζ312431173112316313ζ311631831431231ζ312031183110319315ζ3128312531193114317ζ31263122312131133111ζ31303129312731233115ζ31263122312131133111ζ31303129312731233115ζ311631831431231ζ312431173112316313ζ312031183110319315ζ3128312531193114317    complex lifted from C31⋊C5
ρ175-500000000ζ312431173112316313ζ311631831431231ζ312031183110319315ζ3128312531193114317ζ31263122312131133111ζ3130312931273123311531263122312131133111313031293127312331153116318314312313124311731123163133120311831103193153128312531193114317    complex faithful
ρ185500000000ζ3128312531193114317ζ31303129312731233115ζ31263122312131133111ζ312431173112316313ζ312031183110319315ζ311631831431231ζ312031183110319315ζ311631831431231ζ31303129312731233115ζ3128312531193114317ζ31263122312131133111ζ312431173112316313    complex lifted from C31⋊C5
ρ195-500000000ζ31303129312731233115ζ312031183110319315ζ3128312531193114317ζ311631831431231ζ312431173112316313ζ3126312231213113311131243117311231631331263122312131133111312031183110319315313031293127312331153128312531193114317311631831431231    complex faithful
ρ205500000000ζ31263122312131133111ζ3128312531193114317ζ311631831431231ζ312031183110319315ζ31303129312731233115ζ312431173112316313ζ31303129312731233115ζ312431173112316313ζ3128312531193114317ζ31263122312131133111ζ311631831431231ζ312031183110319315    complex lifted from C31⋊C5
ρ215500000000ζ311631831431231ζ31263122312131133111ζ312431173112316313ζ31303129312731233115ζ3128312531193114317ζ312031183110319315ζ3128312531193114317ζ312031183110319315ζ31263122312131133111ζ311631831431231ζ312431173112316313ζ31303129312731233115    complex lifted from C31⋊C5
ρ225-500000000ζ3128312531193114317ζ31303129312731233115ζ31263122312131133111ζ312431173112316313ζ312031183110319315ζ31163183143123131203118311031931531163183143123131303129312731233115312831253119311431731263122312131133111312431173112316313    complex faithful

Smallest permutation representation of C2×C31⋊C5
On 62 points
Generators in S62
(1 32)(2 33)(3 34)(4 35)(5 36)(6 37)(7 38)(8 39)(9 40)(10 41)(11 42)(12 43)(13 44)(14 45)(15 46)(16 47)(17 48)(18 49)(19 50)(20 51)(21 52)(22 53)(23 54)(24 55)(25 56)(26 57)(27 58)(28 59)(29 60)(30 61)(31 62)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31)(32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62)
(2 17 9 5 3)(4 18 25 13 7)(6 19 10 21 11)(8 20 26 29 15)(12 22 27 14 23)(16 24 28 30 31)(33 48 40 36 34)(35 49 56 44 38)(37 50 41 52 42)(39 51 57 60 46)(43 53 58 45 54)(47 55 59 61 62)

G:=sub<Sym(62)| (1,32)(2,33)(3,34)(4,35)(5,36)(6,37)(7,38)(8,39)(9,40)(10,41)(11,42)(12,43)(13,44)(14,45)(15,46)(16,47)(17,48)(18,49)(19,50)(20,51)(21,52)(22,53)(23,54)(24,55)(25,56)(26,57)(27,58)(28,59)(29,60)(30,61)(31,62), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31)(32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62), (2,17,9,5,3)(4,18,25,13,7)(6,19,10,21,11)(8,20,26,29,15)(12,22,27,14,23)(16,24,28,30,31)(33,48,40,36,34)(35,49,56,44,38)(37,50,41,52,42)(39,51,57,60,46)(43,53,58,45,54)(47,55,59,61,62)>;

G:=Group( (1,32)(2,33)(3,34)(4,35)(5,36)(6,37)(7,38)(8,39)(9,40)(10,41)(11,42)(12,43)(13,44)(14,45)(15,46)(16,47)(17,48)(18,49)(19,50)(20,51)(21,52)(22,53)(23,54)(24,55)(25,56)(26,57)(27,58)(28,59)(29,60)(30,61)(31,62), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31)(32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62), (2,17,9,5,3)(4,18,25,13,7)(6,19,10,21,11)(8,20,26,29,15)(12,22,27,14,23)(16,24,28,30,31)(33,48,40,36,34)(35,49,56,44,38)(37,50,41,52,42)(39,51,57,60,46)(43,53,58,45,54)(47,55,59,61,62) );

G=PermutationGroup([[(1,32),(2,33),(3,34),(4,35),(5,36),(6,37),(7,38),(8,39),(9,40),(10,41),(11,42),(12,43),(13,44),(14,45),(15,46),(16,47),(17,48),(18,49),(19,50),(20,51),(21,52),(22,53),(23,54),(24,55),(25,56),(26,57),(27,58),(28,59),(29,60),(30,61),(31,62)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31),(32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62)], [(2,17,9,5,3),(4,18,25,13,7),(6,19,10,21,11),(8,20,26,29,15),(12,22,27,14,23),(16,24,28,30,31),(33,48,40,36,34),(35,49,56,44,38),(37,50,41,52,42),(39,51,57,60,46),(43,53,58,45,54),(47,55,59,61,62)]])

Matrix representation of C2×C31⋊C5 in GL6(𝔽311)

31000000
010000
001000
000100
000010
000001
,
100000
0352788971
010000
001000
000100
000010
,
5200000
010000
000100
000001
021428696112302
0523758307198

G:=sub<GL(6,GF(311))| [310,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,35,1,0,0,0,0,27,0,1,0,0,0,88,0,0,1,0,0,97,0,0,0,1,0,1,0,0,0,0],[52,0,0,0,0,0,0,1,0,0,214,52,0,0,0,0,286,37,0,0,1,0,96,58,0,0,0,0,112,307,0,0,0,1,302,198] >;

C2×C31⋊C5 in GAP, Magma, Sage, TeX

C_2\times C_{31}\rtimes C_5
% in TeX

G:=Group("C2xC31:C5");
// GroupNames label

G:=SmallGroup(310,2);
// by ID

G=gap.SmallGroup(310,2);
# by ID

G:=PCGroup([3,-2,-5,-31,725]);
// Polycyclic

G:=Group<a,b,c|a^2=b^31=c^5=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^2>;
// generators/relations

Export

Subgroup lattice of C2×C31⋊C5 in TeX
Character table of C2×C31⋊C5 in TeX

׿
×
𝔽