Copied to
clipboard

G = C2×C49⋊C3order 294 = 2·3·72

Direct product of C2 and C49⋊C3

direct product, metacyclic, supersoluble, monomial, Z-group, 3-hyperelementary

Aliases: C2×C49⋊C3, C98⋊C3, C492C6, C14.(C7⋊C3), C7.(C2×C7⋊C3), SmallGroup(294,2)

Series: Derived Chief Lower central Upper central

C1C49 — C2×C49⋊C3
C1C7C49C49⋊C3 — C2×C49⋊C3
C49 — C2×C49⋊C3
C1C2

Generators and relations for C2×C49⋊C3
 G = < a,b,c | a2=b49=c3=1, ab=ba, ac=ca, cbc-1=b18 >

49C3
49C6
7C7⋊C3
7C2×C7⋊C3

Smallest permutation representation of C2×C49⋊C3
On 98 points
Generators in S98
(1 73)(2 74)(3 75)(4 76)(5 77)(6 78)(7 79)(8 80)(9 81)(10 82)(11 83)(12 84)(13 85)(14 86)(15 87)(16 88)(17 89)(18 90)(19 91)(20 92)(21 93)(22 94)(23 95)(24 96)(25 97)(26 98)(27 50)(28 51)(29 52)(30 53)(31 54)(32 55)(33 56)(34 57)(35 58)(36 59)(37 60)(38 61)(39 62)(40 63)(41 64)(42 65)(43 66)(44 67)(45 68)(46 69)(47 70)(48 71)(49 72)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49)(50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98)
(2 31 19)(3 12 37)(4 42 6)(5 23 24)(7 34 11)(8 15 29)(9 45 47)(10 26 16)(13 18 21)(14 48 39)(17 40 44)(20 32 49)(22 43 36)(25 35 41)(27 46 28)(30 38 33)(50 69 51)(52 80 87)(53 61 56)(54 91 74)(55 72 92)(57 83 79)(58 64 97)(59 94 66)(60 75 84)(62 86 71)(63 67 89)(65 78 76)(68 70 81)(77 95 96)(82 98 88)(85 90 93)

G:=sub<Sym(98)| (1,73)(2,74)(3,75)(4,76)(5,77)(6,78)(7,79)(8,80)(9,81)(10,82)(11,83)(12,84)(13,85)(14,86)(15,87)(16,88)(17,89)(18,90)(19,91)(20,92)(21,93)(22,94)(23,95)(24,96)(25,97)(26,98)(27,50)(28,51)(29,52)(30,53)(31,54)(32,55)(33,56)(34,57)(35,58)(36,59)(37,60)(38,61)(39,62)(40,63)(41,64)(42,65)(43,66)(44,67)(45,68)(46,69)(47,70)(48,71)(49,72), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49)(50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98), (2,31,19)(3,12,37)(4,42,6)(5,23,24)(7,34,11)(8,15,29)(9,45,47)(10,26,16)(13,18,21)(14,48,39)(17,40,44)(20,32,49)(22,43,36)(25,35,41)(27,46,28)(30,38,33)(50,69,51)(52,80,87)(53,61,56)(54,91,74)(55,72,92)(57,83,79)(58,64,97)(59,94,66)(60,75,84)(62,86,71)(63,67,89)(65,78,76)(68,70,81)(77,95,96)(82,98,88)(85,90,93)>;

G:=Group( (1,73)(2,74)(3,75)(4,76)(5,77)(6,78)(7,79)(8,80)(9,81)(10,82)(11,83)(12,84)(13,85)(14,86)(15,87)(16,88)(17,89)(18,90)(19,91)(20,92)(21,93)(22,94)(23,95)(24,96)(25,97)(26,98)(27,50)(28,51)(29,52)(30,53)(31,54)(32,55)(33,56)(34,57)(35,58)(36,59)(37,60)(38,61)(39,62)(40,63)(41,64)(42,65)(43,66)(44,67)(45,68)(46,69)(47,70)(48,71)(49,72), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49)(50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98), (2,31,19)(3,12,37)(4,42,6)(5,23,24)(7,34,11)(8,15,29)(9,45,47)(10,26,16)(13,18,21)(14,48,39)(17,40,44)(20,32,49)(22,43,36)(25,35,41)(27,46,28)(30,38,33)(50,69,51)(52,80,87)(53,61,56)(54,91,74)(55,72,92)(57,83,79)(58,64,97)(59,94,66)(60,75,84)(62,86,71)(63,67,89)(65,78,76)(68,70,81)(77,95,96)(82,98,88)(85,90,93) );

G=PermutationGroup([[(1,73),(2,74),(3,75),(4,76),(5,77),(6,78),(7,79),(8,80),(9,81),(10,82),(11,83),(12,84),(13,85),(14,86),(15,87),(16,88),(17,89),(18,90),(19,91),(20,92),(21,93),(22,94),(23,95),(24,96),(25,97),(26,98),(27,50),(28,51),(29,52),(30,53),(31,54),(32,55),(33,56),(34,57),(35,58),(36,59),(37,60),(38,61),(39,62),(40,63),(41,64),(42,65),(43,66),(44,67),(45,68),(46,69),(47,70),(48,71),(49,72)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49),(50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98)], [(2,31,19),(3,12,37),(4,42,6),(5,23,24),(7,34,11),(8,15,29),(9,45,47),(10,26,16),(13,18,21),(14,48,39),(17,40,44),(20,32,49),(22,43,36),(25,35,41),(27,46,28),(30,38,33),(50,69,51),(52,80,87),(53,61,56),(54,91,74),(55,72,92),(57,83,79),(58,64,97),(59,94,66),(60,75,84),(62,86,71),(63,67,89),(65,78,76),(68,70,81),(77,95,96),(82,98,88),(85,90,93)]])

38 conjugacy classes

class 1  2 3A3B6A6B7A7B14A14B49A···49N98A···98N
order12336677141449···4998···98
size114949494933333···33···3

38 irreducible representations

dim11113333
type++
imageC1C2C3C6C7⋊C3C2×C7⋊C3C49⋊C3C2×C49⋊C3
kernelC2×C49⋊C3C49⋊C3C98C49C14C7C2C1
# reps1122221414

Matrix representation of C2×C49⋊C3 in GL4(𝔽883) generated by

882000
0100
0010
0001
,
1000
0600644561
0561286652
06526723
,
337000
0100
0521882882
0010
G:=sub<GL(4,GF(883))| [882,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,600,561,652,0,644,286,67,0,561,652,23],[337,0,0,0,0,1,521,0,0,0,882,1,0,0,882,0] >;

C2×C49⋊C3 in GAP, Magma, Sage, TeX

C_2\times C_{49}\rtimes C_3
% in TeX

G:=Group("C2xC49:C3");
// GroupNames label

G:=SmallGroup(294,2);
// by ID

G=gap.SmallGroup(294,2);
# by ID

G:=PCGroup([4,-2,-3,-7,-7,330,178,679]);
// Polycyclic

G:=Group<a,b,c|a^2=b^49=c^3=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^18>;
// generators/relations

Export

Subgroup lattice of C2×C49⋊C3 in TeX

׿
×
𝔽