Copied to
clipboard

G = D151order 302 = 2·151

Dihedral group

metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary

Aliases: D151, C151⋊C2, sometimes denoted D302 or Dih151 or Dih302, SmallGroup(302,1)

Series: Derived Chief Lower central Upper central

C1C151 — D151
C1C151 — D151
C151 — D151
C1

Generators and relations for D151
 G = < a,b | a151=b2=1, bab=a-1 >

151C2

Smallest permutation representation of D151
On 151 points: primitive
Generators in S151
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151)
(1 151)(2 150)(3 149)(4 148)(5 147)(6 146)(7 145)(8 144)(9 143)(10 142)(11 141)(12 140)(13 139)(14 138)(15 137)(16 136)(17 135)(18 134)(19 133)(20 132)(21 131)(22 130)(23 129)(24 128)(25 127)(26 126)(27 125)(28 124)(29 123)(30 122)(31 121)(32 120)(33 119)(34 118)(35 117)(36 116)(37 115)(38 114)(39 113)(40 112)(41 111)(42 110)(43 109)(44 108)(45 107)(46 106)(47 105)(48 104)(49 103)(50 102)(51 101)(52 100)(53 99)(54 98)(55 97)(56 96)(57 95)(58 94)(59 93)(60 92)(61 91)(62 90)(63 89)(64 88)(65 87)(66 86)(67 85)(68 84)(69 83)(70 82)(71 81)(72 80)(73 79)(74 78)(75 77)

G:=sub<Sym(151)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151), (1,151)(2,150)(3,149)(4,148)(5,147)(6,146)(7,145)(8,144)(9,143)(10,142)(11,141)(12,140)(13,139)(14,138)(15,137)(16,136)(17,135)(18,134)(19,133)(20,132)(21,131)(22,130)(23,129)(24,128)(25,127)(26,126)(27,125)(28,124)(29,123)(30,122)(31,121)(32,120)(33,119)(34,118)(35,117)(36,116)(37,115)(38,114)(39,113)(40,112)(41,111)(42,110)(43,109)(44,108)(45,107)(46,106)(47,105)(48,104)(49,103)(50,102)(51,101)(52,100)(53,99)(54,98)(55,97)(56,96)(57,95)(58,94)(59,93)(60,92)(61,91)(62,90)(63,89)(64,88)(65,87)(66,86)(67,85)(68,84)(69,83)(70,82)(71,81)(72,80)(73,79)(74,78)(75,77)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151), (1,151)(2,150)(3,149)(4,148)(5,147)(6,146)(7,145)(8,144)(9,143)(10,142)(11,141)(12,140)(13,139)(14,138)(15,137)(16,136)(17,135)(18,134)(19,133)(20,132)(21,131)(22,130)(23,129)(24,128)(25,127)(26,126)(27,125)(28,124)(29,123)(30,122)(31,121)(32,120)(33,119)(34,118)(35,117)(36,116)(37,115)(38,114)(39,113)(40,112)(41,111)(42,110)(43,109)(44,108)(45,107)(46,106)(47,105)(48,104)(49,103)(50,102)(51,101)(52,100)(53,99)(54,98)(55,97)(56,96)(57,95)(58,94)(59,93)(60,92)(61,91)(62,90)(63,89)(64,88)(65,87)(66,86)(67,85)(68,84)(69,83)(70,82)(71,81)(72,80)(73,79)(74,78)(75,77) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151)], [(1,151),(2,150),(3,149),(4,148),(5,147),(6,146),(7,145),(8,144),(9,143),(10,142),(11,141),(12,140),(13,139),(14,138),(15,137),(16,136),(17,135),(18,134),(19,133),(20,132),(21,131),(22,130),(23,129),(24,128),(25,127),(26,126),(27,125),(28,124),(29,123),(30,122),(31,121),(32,120),(33,119),(34,118),(35,117),(36,116),(37,115),(38,114),(39,113),(40,112),(41,111),(42,110),(43,109),(44,108),(45,107),(46,106),(47,105),(48,104),(49,103),(50,102),(51,101),(52,100),(53,99),(54,98),(55,97),(56,96),(57,95),(58,94),(59,93),(60,92),(61,91),(62,90),(63,89),(64,88),(65,87),(66,86),(67,85),(68,84),(69,83),(70,82),(71,81),(72,80),(73,79),(74,78),(75,77)]])

77 conjugacy classes

class 1  2 151A···151BW
order12151···151
size11512···2

77 irreducible representations

dim112
type+++
imageC1C2D151
kernelD151C151C1
# reps1175

Matrix representation of D151 in GL2(𝔽907) generated by

431906
10
,
431906
732476
G:=sub<GL(2,GF(907))| [431,1,906,0],[431,732,906,476] >;

D151 in GAP, Magma, Sage, TeX

D_{151}
% in TeX

G:=Group("D151");
// GroupNames label

G:=SmallGroup(302,1);
// by ID

G=gap.SmallGroup(302,1);
# by ID

G:=PCGroup([2,-2,-151,1201]);
// Polycyclic

G:=Group<a,b|a^151=b^2=1,b*a*b=a^-1>;
// generators/relations

Export

Subgroup lattice of D151 in TeX

׿
×
𝔽