Copied to
clipboard

G = D155order 310 = 2·5·31

Dihedral group

metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary

Aliases: D155, C5⋊D31, C31⋊D5, C1551C2, sometimes denoted D310 or Dih155 or Dih310, SmallGroup(310,5)

Series: Derived Chief Lower central Upper central

C1C155 — D155
C1C31C155 — D155
C155 — D155
C1

Generators and relations for D155
 G = < a,b | a155=b2=1, bab=a-1 >

155C2
31D5
5D31

Smallest permutation representation of D155
On 155 points
Generators in S155
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155)
(1 155)(2 154)(3 153)(4 152)(5 151)(6 150)(7 149)(8 148)(9 147)(10 146)(11 145)(12 144)(13 143)(14 142)(15 141)(16 140)(17 139)(18 138)(19 137)(20 136)(21 135)(22 134)(23 133)(24 132)(25 131)(26 130)(27 129)(28 128)(29 127)(30 126)(31 125)(32 124)(33 123)(34 122)(35 121)(36 120)(37 119)(38 118)(39 117)(40 116)(41 115)(42 114)(43 113)(44 112)(45 111)(46 110)(47 109)(48 108)(49 107)(50 106)(51 105)(52 104)(53 103)(54 102)(55 101)(56 100)(57 99)(58 98)(59 97)(60 96)(61 95)(62 94)(63 93)(64 92)(65 91)(66 90)(67 89)(68 88)(69 87)(70 86)(71 85)(72 84)(73 83)(74 82)(75 81)(76 80)(77 79)

G:=sub<Sym(155)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155), (1,155)(2,154)(3,153)(4,152)(5,151)(6,150)(7,149)(8,148)(9,147)(10,146)(11,145)(12,144)(13,143)(14,142)(15,141)(16,140)(17,139)(18,138)(19,137)(20,136)(21,135)(22,134)(23,133)(24,132)(25,131)(26,130)(27,129)(28,128)(29,127)(30,126)(31,125)(32,124)(33,123)(34,122)(35,121)(36,120)(37,119)(38,118)(39,117)(40,116)(41,115)(42,114)(43,113)(44,112)(45,111)(46,110)(47,109)(48,108)(49,107)(50,106)(51,105)(52,104)(53,103)(54,102)(55,101)(56,100)(57,99)(58,98)(59,97)(60,96)(61,95)(62,94)(63,93)(64,92)(65,91)(66,90)(67,89)(68,88)(69,87)(70,86)(71,85)(72,84)(73,83)(74,82)(75,81)(76,80)(77,79)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155), (1,155)(2,154)(3,153)(4,152)(5,151)(6,150)(7,149)(8,148)(9,147)(10,146)(11,145)(12,144)(13,143)(14,142)(15,141)(16,140)(17,139)(18,138)(19,137)(20,136)(21,135)(22,134)(23,133)(24,132)(25,131)(26,130)(27,129)(28,128)(29,127)(30,126)(31,125)(32,124)(33,123)(34,122)(35,121)(36,120)(37,119)(38,118)(39,117)(40,116)(41,115)(42,114)(43,113)(44,112)(45,111)(46,110)(47,109)(48,108)(49,107)(50,106)(51,105)(52,104)(53,103)(54,102)(55,101)(56,100)(57,99)(58,98)(59,97)(60,96)(61,95)(62,94)(63,93)(64,92)(65,91)(66,90)(67,89)(68,88)(69,87)(70,86)(71,85)(72,84)(73,83)(74,82)(75,81)(76,80)(77,79) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155)], [(1,155),(2,154),(3,153),(4,152),(5,151),(6,150),(7,149),(8,148),(9,147),(10,146),(11,145),(12,144),(13,143),(14,142),(15,141),(16,140),(17,139),(18,138),(19,137),(20,136),(21,135),(22,134),(23,133),(24,132),(25,131),(26,130),(27,129),(28,128),(29,127),(30,126),(31,125),(32,124),(33,123),(34,122),(35,121),(36,120),(37,119),(38,118),(39,117),(40,116),(41,115),(42,114),(43,113),(44,112),(45,111),(46,110),(47,109),(48,108),(49,107),(50,106),(51,105),(52,104),(53,103),(54,102),(55,101),(56,100),(57,99),(58,98),(59,97),(60,96),(61,95),(62,94),(63,93),(64,92),(65,91),(66,90),(67,89),(68,88),(69,87),(70,86),(71,85),(72,84),(73,83),(74,82),(75,81),(76,80),(77,79)]])

79 conjugacy classes

class 1  2 5A5B31A···31O155A···155BH
order125531···31155···155
size1155222···22···2

79 irreducible representations

dim11222
type+++++
imageC1C2D5D31D155
kernelD155C155C31C5C1
# reps1121560

Matrix representation of D155 in GL2(𝔽311) generated by

14333
104111
,
77128
12234
G:=sub<GL(2,GF(311))| [143,104,33,111],[77,12,128,234] >;

D155 in GAP, Magma, Sage, TeX

D_{155}
% in TeX

G:=Group("D155");
// GroupNames label

G:=SmallGroup(310,5);
// by ID

G=gap.SmallGroup(310,5);
# by ID

G:=PCGroup([3,-2,-5,-31,49,2702]);
// Polycyclic

G:=Group<a,b|a^155=b^2=1,b*a*b=a^-1>;
// generators/relations

Export

Subgroup lattice of D155 in TeX

׿
×
𝔽