metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary
Aliases: D157, C157⋊C2, sometimes denoted D314 or Dih157 or Dih314, SmallGroup(314,1)
Series: Derived ►Chief ►Lower central ►Upper central
C157 — D157 |
Generators and relations for D157
G = < a,b | a157=b2=1, bab=a-1 >
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157)
(1 157)(2 156)(3 155)(4 154)(5 153)(6 152)(7 151)(8 150)(9 149)(10 148)(11 147)(12 146)(13 145)(14 144)(15 143)(16 142)(17 141)(18 140)(19 139)(20 138)(21 137)(22 136)(23 135)(24 134)(25 133)(26 132)(27 131)(28 130)(29 129)(30 128)(31 127)(32 126)(33 125)(34 124)(35 123)(36 122)(37 121)(38 120)(39 119)(40 118)(41 117)(42 116)(43 115)(44 114)(45 113)(46 112)(47 111)(48 110)(49 109)(50 108)(51 107)(52 106)(53 105)(54 104)(55 103)(56 102)(57 101)(58 100)(59 99)(60 98)(61 97)(62 96)(63 95)(64 94)(65 93)(66 92)(67 91)(68 90)(69 89)(70 88)(71 87)(72 86)(73 85)(74 84)(75 83)(76 82)(77 81)(78 80)
G:=sub<Sym(157)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157), (1,157)(2,156)(3,155)(4,154)(5,153)(6,152)(7,151)(8,150)(9,149)(10,148)(11,147)(12,146)(13,145)(14,144)(15,143)(16,142)(17,141)(18,140)(19,139)(20,138)(21,137)(22,136)(23,135)(24,134)(25,133)(26,132)(27,131)(28,130)(29,129)(30,128)(31,127)(32,126)(33,125)(34,124)(35,123)(36,122)(37,121)(38,120)(39,119)(40,118)(41,117)(42,116)(43,115)(44,114)(45,113)(46,112)(47,111)(48,110)(49,109)(50,108)(51,107)(52,106)(53,105)(54,104)(55,103)(56,102)(57,101)(58,100)(59,99)(60,98)(61,97)(62,96)(63,95)(64,94)(65,93)(66,92)(67,91)(68,90)(69,89)(70,88)(71,87)(72,86)(73,85)(74,84)(75,83)(76,82)(77,81)(78,80)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157), (1,157)(2,156)(3,155)(4,154)(5,153)(6,152)(7,151)(8,150)(9,149)(10,148)(11,147)(12,146)(13,145)(14,144)(15,143)(16,142)(17,141)(18,140)(19,139)(20,138)(21,137)(22,136)(23,135)(24,134)(25,133)(26,132)(27,131)(28,130)(29,129)(30,128)(31,127)(32,126)(33,125)(34,124)(35,123)(36,122)(37,121)(38,120)(39,119)(40,118)(41,117)(42,116)(43,115)(44,114)(45,113)(46,112)(47,111)(48,110)(49,109)(50,108)(51,107)(52,106)(53,105)(54,104)(55,103)(56,102)(57,101)(58,100)(59,99)(60,98)(61,97)(62,96)(63,95)(64,94)(65,93)(66,92)(67,91)(68,90)(69,89)(70,88)(71,87)(72,86)(73,85)(74,84)(75,83)(76,82)(77,81)(78,80) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157)], [(1,157),(2,156),(3,155),(4,154),(5,153),(6,152),(7,151),(8,150),(9,149),(10,148),(11,147),(12,146),(13,145),(14,144),(15,143),(16,142),(17,141),(18,140),(19,139),(20,138),(21,137),(22,136),(23,135),(24,134),(25,133),(26,132),(27,131),(28,130),(29,129),(30,128),(31,127),(32,126),(33,125),(34,124),(35,123),(36,122),(37,121),(38,120),(39,119),(40,118),(41,117),(42,116),(43,115),(44,114),(45,113),(46,112),(47,111),(48,110),(49,109),(50,108),(51,107),(52,106),(53,105),(54,104),(55,103),(56,102),(57,101),(58,100),(59,99),(60,98),(61,97),(62,96),(63,95),(64,94),(65,93),(66,92),(67,91),(68,90),(69,89),(70,88),(71,87),(72,86),(73,85),(74,84),(75,83),(76,82),(77,81),(78,80)]])
80 conjugacy classes
class | 1 | 2 | 157A | ··· | 157BZ |
order | 1 | 2 | 157 | ··· | 157 |
size | 1 | 157 | 2 | ··· | 2 |
80 irreducible representations
dim | 1 | 1 | 2 |
type | + | + | + |
image | C1 | C2 | D157 |
kernel | D157 | C157 | C1 |
# reps | 1 | 1 | 78 |
Matrix representation of D157 ►in GL2(𝔽1571) generated by
666 | 1570 |
1125 | 1140 |
268 | 1332 |
1556 | 1303 |
G:=sub<GL(2,GF(1571))| [666,1125,1570,1140],[268,1556,1332,1303] >;
D157 in GAP, Magma, Sage, TeX
D_{157}
% in TeX
G:=Group("D157");
// GroupNames label
G:=SmallGroup(314,1);
// by ID
G=gap.SmallGroup(314,1);
# by ID
G:=PCGroup([2,-2,-157,1249]);
// Polycyclic
G:=Group<a,b|a^157=b^2=1,b*a*b=a^-1>;
// generators/relations
Export