Copied to
clipboard

G = D7×C7⋊C3order 294 = 2·3·72

Direct product of D7 and C7⋊C3

direct product, metabelian, supersoluble, monomial, A-group

Aliases: D7×C7⋊C3, C722C6, C72(C3×D7), (C7×D7)⋊2C3, (C7×C7⋊C3)⋊2C2, C75(C2×C7⋊C3), SmallGroup(294,9)

Series: Derived Chief Lower central Upper central

C1C72 — D7×C7⋊C3
C1C7C72C7×C7⋊C3 — D7×C7⋊C3
C72 — D7×C7⋊C3
C1

Generators and relations for D7×C7⋊C3
 G = < a,b,c,d | a7=b2=c7=d3=1, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c4 >

7C2
7C3
6C7
49C6
7C14
7C21
7C2×C7⋊C3
7C3×D7

Character table of D7×C7⋊C3

 class 123A3B6A6B7A7B7C7D7E7F7G7H7I7J7K14A14B21A21B21C21D21E21F
 size 17774949222336666662121141414141414
ρ11111111111111111111111111    trivial
ρ21-111-1-111111111111-1-1111111    linear of order 2
ρ311ζ3ζ32ζ32ζ31111111111111ζ32ζ3ζ32ζ32ζ3ζ3    linear of order 3
ρ411ζ32ζ3ζ3ζ321111111111111ζ3ζ32ζ3ζ3ζ32ζ32    linear of order 3
ρ51-1ζ3ζ32ζ6ζ6511111111111-1-1ζ32ζ3ζ32ζ32ζ3ζ3    linear of order 6
ρ61-1ζ32ζ3ζ65ζ611111111111-1-1ζ3ζ32ζ3ζ3ζ32ζ32    linear of order 6
ρ7202200ζ7473ζ767ζ757222ζ767ζ7572ζ7572ζ767ζ7473ζ747300ζ767ζ7572ζ7572ζ7473ζ7473ζ767    orthogonal lifted from D7
ρ8202200ζ7572ζ7473ζ76722ζ7473ζ767ζ767ζ7473ζ7572ζ757200ζ7473ζ767ζ767ζ7572ζ7572ζ7473    orthogonal lifted from D7
ρ9202200ζ767ζ7572ζ747322ζ7572ζ7473ζ7473ζ7572ζ767ζ76700ζ7572ζ7473ζ7473ζ767ζ767ζ7572    orthogonal lifted from D7
ρ1020-1--3-1+-300ζ7473ζ767ζ757222ζ767ζ7572ζ7572ζ767ζ7473ζ747300ζ3ζ763ζ7ζ32ζ7532ζ72ζ3ζ753ζ72ζ3ζ743ζ73ζ32ζ7432ζ73ζ32ζ7632ζ7    complex lifted from C3×D7
ρ1120-1--3-1+-300ζ767ζ7572ζ747322ζ7572ζ7473ζ7473ζ7572ζ767ζ76700ζ3ζ753ζ72ζ32ζ7432ζ73ζ3ζ743ζ73ζ3ζ763ζ7ζ32ζ7632ζ7ζ32ζ7532ζ72    complex lifted from C3×D7
ρ1220-1+-3-1--300ζ767ζ7572ζ747322ζ7572ζ7473ζ7473ζ7572ζ767ζ76700ζ32ζ7532ζ72ζ3ζ743ζ73ζ32ζ7432ζ73ζ32ζ7632ζ7ζ3ζ763ζ7ζ3ζ753ζ72    complex lifted from C3×D7
ρ1320-1+-3-1--300ζ7473ζ767ζ757222ζ767ζ7572ζ7572ζ767ζ7473ζ747300ζ32ζ7632ζ7ζ3ζ753ζ72ζ32ζ7532ζ72ζ32ζ7432ζ73ζ3ζ743ζ73ζ3ζ763ζ7    complex lifted from C3×D7
ρ1420-1+-3-1--300ζ7572ζ7473ζ76722ζ7473ζ767ζ767ζ7473ζ7572ζ757200ζ32ζ7432ζ73ζ3ζ763ζ7ζ32ζ7632ζ7ζ32ζ7532ζ72ζ3ζ753ζ72ζ3ζ743ζ73    complex lifted from C3×D7
ρ1520-1--3-1+-300ζ7572ζ7473ζ76722ζ7473ζ767ζ767ζ7473ζ7572ζ757200ζ3ζ743ζ73ζ32ζ7632ζ7ζ3ζ763ζ7ζ3ζ753ζ72ζ32ζ7532ζ72ζ32ζ7432ζ73    complex lifted from C3×D7
ρ163-30000333-1--7/2-1+-7/2-1--7/2-1--7/2-1+-7/2-1+-7/2-1--7/2-1+-7/21--7/21+-7/2000000    complex lifted from C2×C7⋊C3
ρ17330000333-1--7/2-1+-7/2-1--7/2-1--7/2-1+-7/2-1+-7/2-1--7/2-1+-7/2-1+-7/2-1--7/2000000    complex lifted from C7⋊C3
ρ183-30000333-1+-7/2-1--7/2-1+-7/2-1+-7/2-1--7/2-1--7/2-1+-7/2-1--7/21+-7/21--7/2000000    complex lifted from C2×C7⋊C3
ρ19330000333-1+-7/2-1--7/2-1+-7/2-1+-7/2-1--7/2-1--7/2-1+-7/2-1--7/2-1--7/2-1+-7/2000000    complex lifted from C7⋊C3
ρ2060000076+3ζ775+3ζ7274+3ζ73-1--7-1+-776727757472ζ757372ζ76757ζ7473776747300000000    complex faithful
ρ2160000075+3ζ7274+3ζ7376+3ζ7-1--7-1+-7757472ζ74737767473ζ75737276727ζ7675700000000    complex faithful
ρ2260000074+3ζ7376+3ζ775+3ζ72-1+-7-1--7767473ζ7675776727ζ74737ζ75737275747200000000    complex faithful
ρ2360000074+3ζ7376+3ζ775+3ζ72-1--7-1+-7ζ7473776727ζ76757767473757472ζ75737200000000    complex faithful
ρ2460000075+3ζ7274+3ζ7376+3ζ7-1+-7-1--7ζ757372767473ζ74737757472ζ767577672700000000    complex faithful
ρ2560000076+3ζ775+3ζ7274+3ζ73-1+-7-1--7ζ76757ζ75737275747276727767473ζ7473700000000    complex faithful

Smallest permutation representation of D7×C7⋊C3
On 42 points
Generators in S42
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)
(1 26)(2 25)(3 24)(4 23)(5 22)(6 28)(7 27)(8 33)(9 32)(10 31)(11 30)(12 29)(13 35)(14 34)(15 40)(16 39)(17 38)(18 37)(19 36)(20 42)(21 41)
(1 2 3 4 5 6 7)(8 10 12 14 9 11 13)(15 19 16 20 17 21 18)(22 28 27 26 25 24 23)(29 34 32 30 35 33 31)(36 39 42 38 41 37 40)
(1 15 8)(2 16 9)(3 17 10)(4 18 11)(5 19 12)(6 20 13)(7 21 14)(22 36 29)(23 37 30)(24 38 31)(25 39 32)(26 40 33)(27 41 34)(28 42 35)

G:=sub<Sym(42)| (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42), (1,26)(2,25)(3,24)(4,23)(5,22)(6,28)(7,27)(8,33)(9,32)(10,31)(11,30)(12,29)(13,35)(14,34)(15,40)(16,39)(17,38)(18,37)(19,36)(20,42)(21,41), (1,2,3,4,5,6,7)(8,10,12,14,9,11,13)(15,19,16,20,17,21,18)(22,28,27,26,25,24,23)(29,34,32,30,35,33,31)(36,39,42,38,41,37,40), (1,15,8)(2,16,9)(3,17,10)(4,18,11)(5,19,12)(6,20,13)(7,21,14)(22,36,29)(23,37,30)(24,38,31)(25,39,32)(26,40,33)(27,41,34)(28,42,35)>;

G:=Group( (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42), (1,26)(2,25)(3,24)(4,23)(5,22)(6,28)(7,27)(8,33)(9,32)(10,31)(11,30)(12,29)(13,35)(14,34)(15,40)(16,39)(17,38)(18,37)(19,36)(20,42)(21,41), (1,2,3,4,5,6,7)(8,10,12,14,9,11,13)(15,19,16,20,17,21,18)(22,28,27,26,25,24,23)(29,34,32,30,35,33,31)(36,39,42,38,41,37,40), (1,15,8)(2,16,9)(3,17,10)(4,18,11)(5,19,12)(6,20,13)(7,21,14)(22,36,29)(23,37,30)(24,38,31)(25,39,32)(26,40,33)(27,41,34)(28,42,35) );

G=PermutationGroup([[(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42)], [(1,26),(2,25),(3,24),(4,23),(5,22),(6,28),(7,27),(8,33),(9,32),(10,31),(11,30),(12,29),(13,35),(14,34),(15,40),(16,39),(17,38),(18,37),(19,36),(20,42),(21,41)], [(1,2,3,4,5,6,7),(8,10,12,14,9,11,13),(15,19,16,20,17,21,18),(22,28,27,26,25,24,23),(29,34,32,30,35,33,31),(36,39,42,38,41,37,40)], [(1,15,8),(2,16,9),(3,17,10),(4,18,11),(5,19,12),(6,20,13),(7,21,14),(22,36,29),(23,37,30),(24,38,31),(25,39,32),(26,40,33),(27,41,34),(28,42,35)]])

Matrix representation of D7×C7⋊C3 in GL5(𝔽43)

842000
10000
00100
00010
00001
,
842000
2035000
00100
00010
00001
,
10000
01000
0091019
00333342
00343425
,
60000
06000
00001
00100
00010

G:=sub<GL(5,GF(43))| [8,1,0,0,0,42,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[8,20,0,0,0,42,35,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,9,33,34,0,0,10,33,34,0,0,19,42,25],[6,0,0,0,0,0,6,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,1,0,0] >;

D7×C7⋊C3 in GAP, Magma, Sage, TeX

D_7\times C_7\rtimes C_3
% in TeX

G:=Group("D7xC7:C3");
// GroupNames label

G:=SmallGroup(294,9);
// by ID

G=gap.SmallGroup(294,9);
# by ID

G:=PCGroup([4,-2,-3,-7,-7,434,679]);
// Polycyclic

G:=Group<a,b,c,d|a^7=b^2=c^7=d^3=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^4>;
// generators/relations

Export

Subgroup lattice of D7×C7⋊C3 in TeX
Character table of D7×C7⋊C3 in TeX

׿
×
𝔽