Extensions 1→N→G→Q→1 with N=S3×C26 and Q=C2

Direct product G=N×Q with N=S3×C26 and Q=C2
dρLabelID
S3×C2×C26156S3xC2xC26312,59

Semidirect products G=N:Q with N=S3×C26 and Q=C2
extensionφ:Q→Out NdρLabelID
(S3×C26)⋊1C2 = C39⋊D4φ: C2/C1C2 ⊆ Out S3×C261564-(S3xC26):1C2312,18
(S3×C26)⋊2C2 = C13⋊D12φ: C2/C1C2 ⊆ Out S3×C261564+(S3xC26):2C2312,20
(S3×C26)⋊3C2 = C2×S3×D13φ: C2/C1C2 ⊆ Out S3×C26784+(S3xC26):3C2312,54
(S3×C26)⋊4C2 = C13×D12φ: C2/C1C2 ⊆ Out S3×C261562(S3xC26):4C2312,34
(S3×C26)⋊5C2 = C13×C3⋊D4φ: C2/C1C2 ⊆ Out S3×C261562(S3xC26):5C2312,36

Non-split extensions G=N.Q with N=S3×C26 and Q=C2
extensionφ:Q→Out NdρLabelID
(S3×C26).C2 = S3×Dic13φ: C2/C1C2 ⊆ Out S3×C261564-(S3xC26).C2312,16
(S3×C26).2C2 = S3×C52φ: trivial image1562(S3xC26).2C2312,33

׿
×
𝔽