direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C13×C3⋊D4, C39⋊9D4, D6⋊2C26, Dic3⋊C26, C26.17D6, C78.22C22, C3⋊2(D4×C13), (C2×C26)⋊3S3, (C2×C6)⋊2C26, (C2×C78)⋊6C2, (S3×C26)⋊5C2, C2.5(S3×C26), C6.5(C2×C26), C22⋊2(S3×C13), (Dic3×C13)⋊4C2, SmallGroup(312,36)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C13×C3⋊D4
G = < a,b,c,d | a13=b3=c4=d2=1, ab=ba, ac=ca, ad=da, cbc-1=dbd=b-1, dcd=c-1 >
(1 2 3 4 5 6 7 8 9 10 11 12 13)(14 15 16 17 18 19 20 21 22 23 24 25 26)(27 28 29 30 31 32 33 34 35 36 37 38 39)(40 41 42 43 44 45 46 47 48 49 50 51 52)(53 54 55 56 57 58 59 60 61 62 63 64 65)(66 67 68 69 70 71 72 73 74 75 76 77 78)(79 80 81 82 83 84 85 86 87 88 89 90 91)(92 93 94 95 96 97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112 113 114 115 116 117)(118 119 120 121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140 141 142 143)(144 145 146 147 148 149 150 151 152 153 154 155 156)
(1 63 28)(2 64 29)(3 65 30)(4 53 31)(5 54 32)(6 55 33)(7 56 34)(8 57 35)(9 58 36)(10 59 37)(11 60 38)(12 61 39)(13 62 27)(14 147 120)(15 148 121)(16 149 122)(17 150 123)(18 151 124)(19 152 125)(20 153 126)(21 154 127)(22 155 128)(23 156 129)(24 144 130)(25 145 118)(26 146 119)(40 75 132)(41 76 133)(42 77 134)(43 78 135)(44 66 136)(45 67 137)(46 68 138)(47 69 139)(48 70 140)(49 71 141)(50 72 142)(51 73 143)(52 74 131)(79 107 96)(80 108 97)(81 109 98)(82 110 99)(83 111 100)(84 112 101)(85 113 102)(86 114 103)(87 115 104)(88 116 92)(89 117 93)(90 105 94)(91 106 95)
(1 146 131 80)(2 147 132 81)(3 148 133 82)(4 149 134 83)(5 150 135 84)(6 151 136 85)(7 152 137 86)(8 153 138 87)(9 154 139 88)(10 155 140 89)(11 156 141 90)(12 144 142 91)(13 145 143 79)(14 40 98 64)(15 41 99 65)(16 42 100 53)(17 43 101 54)(18 44 102 55)(19 45 103 56)(20 46 104 57)(21 47 92 58)(22 48 93 59)(23 49 94 60)(24 50 95 61)(25 51 96 62)(26 52 97 63)(27 118 73 107)(28 119 74 108)(29 120 75 109)(30 121 76 110)(31 122 77 111)(32 123 78 112)(33 124 66 113)(34 125 67 114)(35 126 68 115)(36 127 69 116)(37 128 70 117)(38 129 71 105)(39 130 72 106)
(14 109)(15 110)(16 111)(17 112)(18 113)(19 114)(20 115)(21 116)(22 117)(23 105)(24 106)(25 107)(26 108)(27 62)(28 63)(29 64)(30 65)(31 53)(32 54)(33 55)(34 56)(35 57)(36 58)(37 59)(38 60)(39 61)(40 75)(41 76)(42 77)(43 78)(44 66)(45 67)(46 68)(47 69)(48 70)(49 71)(50 72)(51 73)(52 74)(79 145)(80 146)(81 147)(82 148)(83 149)(84 150)(85 151)(86 152)(87 153)(88 154)(89 155)(90 156)(91 144)(92 127)(93 128)(94 129)(95 130)(96 118)(97 119)(98 120)(99 121)(100 122)(101 123)(102 124)(103 125)(104 126)
G:=sub<Sym(156)| (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65)(66,67,68,69,70,71,72,73,74,75,76,77,78)(79,80,81,82,83,84,85,86,87,88,89,90,91)(92,93,94,95,96,97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112,113,114,115,116,117)(118,119,120,121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140,141,142,143)(144,145,146,147,148,149,150,151,152,153,154,155,156), (1,63,28)(2,64,29)(3,65,30)(4,53,31)(5,54,32)(6,55,33)(7,56,34)(8,57,35)(9,58,36)(10,59,37)(11,60,38)(12,61,39)(13,62,27)(14,147,120)(15,148,121)(16,149,122)(17,150,123)(18,151,124)(19,152,125)(20,153,126)(21,154,127)(22,155,128)(23,156,129)(24,144,130)(25,145,118)(26,146,119)(40,75,132)(41,76,133)(42,77,134)(43,78,135)(44,66,136)(45,67,137)(46,68,138)(47,69,139)(48,70,140)(49,71,141)(50,72,142)(51,73,143)(52,74,131)(79,107,96)(80,108,97)(81,109,98)(82,110,99)(83,111,100)(84,112,101)(85,113,102)(86,114,103)(87,115,104)(88,116,92)(89,117,93)(90,105,94)(91,106,95), (1,146,131,80)(2,147,132,81)(3,148,133,82)(4,149,134,83)(5,150,135,84)(6,151,136,85)(7,152,137,86)(8,153,138,87)(9,154,139,88)(10,155,140,89)(11,156,141,90)(12,144,142,91)(13,145,143,79)(14,40,98,64)(15,41,99,65)(16,42,100,53)(17,43,101,54)(18,44,102,55)(19,45,103,56)(20,46,104,57)(21,47,92,58)(22,48,93,59)(23,49,94,60)(24,50,95,61)(25,51,96,62)(26,52,97,63)(27,118,73,107)(28,119,74,108)(29,120,75,109)(30,121,76,110)(31,122,77,111)(32,123,78,112)(33,124,66,113)(34,125,67,114)(35,126,68,115)(36,127,69,116)(37,128,70,117)(38,129,71,105)(39,130,72,106), (14,109)(15,110)(16,111)(17,112)(18,113)(19,114)(20,115)(21,116)(22,117)(23,105)(24,106)(25,107)(26,108)(27,62)(28,63)(29,64)(30,65)(31,53)(32,54)(33,55)(34,56)(35,57)(36,58)(37,59)(38,60)(39,61)(40,75)(41,76)(42,77)(43,78)(44,66)(45,67)(46,68)(47,69)(48,70)(49,71)(50,72)(51,73)(52,74)(79,145)(80,146)(81,147)(82,148)(83,149)(84,150)(85,151)(86,152)(87,153)(88,154)(89,155)(90,156)(91,144)(92,127)(93,128)(94,129)(95,130)(96,118)(97,119)(98,120)(99,121)(100,122)(101,123)(102,124)(103,125)(104,126)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65)(66,67,68,69,70,71,72,73,74,75,76,77,78)(79,80,81,82,83,84,85,86,87,88,89,90,91)(92,93,94,95,96,97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112,113,114,115,116,117)(118,119,120,121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140,141,142,143)(144,145,146,147,148,149,150,151,152,153,154,155,156), (1,63,28)(2,64,29)(3,65,30)(4,53,31)(5,54,32)(6,55,33)(7,56,34)(8,57,35)(9,58,36)(10,59,37)(11,60,38)(12,61,39)(13,62,27)(14,147,120)(15,148,121)(16,149,122)(17,150,123)(18,151,124)(19,152,125)(20,153,126)(21,154,127)(22,155,128)(23,156,129)(24,144,130)(25,145,118)(26,146,119)(40,75,132)(41,76,133)(42,77,134)(43,78,135)(44,66,136)(45,67,137)(46,68,138)(47,69,139)(48,70,140)(49,71,141)(50,72,142)(51,73,143)(52,74,131)(79,107,96)(80,108,97)(81,109,98)(82,110,99)(83,111,100)(84,112,101)(85,113,102)(86,114,103)(87,115,104)(88,116,92)(89,117,93)(90,105,94)(91,106,95), (1,146,131,80)(2,147,132,81)(3,148,133,82)(4,149,134,83)(5,150,135,84)(6,151,136,85)(7,152,137,86)(8,153,138,87)(9,154,139,88)(10,155,140,89)(11,156,141,90)(12,144,142,91)(13,145,143,79)(14,40,98,64)(15,41,99,65)(16,42,100,53)(17,43,101,54)(18,44,102,55)(19,45,103,56)(20,46,104,57)(21,47,92,58)(22,48,93,59)(23,49,94,60)(24,50,95,61)(25,51,96,62)(26,52,97,63)(27,118,73,107)(28,119,74,108)(29,120,75,109)(30,121,76,110)(31,122,77,111)(32,123,78,112)(33,124,66,113)(34,125,67,114)(35,126,68,115)(36,127,69,116)(37,128,70,117)(38,129,71,105)(39,130,72,106), (14,109)(15,110)(16,111)(17,112)(18,113)(19,114)(20,115)(21,116)(22,117)(23,105)(24,106)(25,107)(26,108)(27,62)(28,63)(29,64)(30,65)(31,53)(32,54)(33,55)(34,56)(35,57)(36,58)(37,59)(38,60)(39,61)(40,75)(41,76)(42,77)(43,78)(44,66)(45,67)(46,68)(47,69)(48,70)(49,71)(50,72)(51,73)(52,74)(79,145)(80,146)(81,147)(82,148)(83,149)(84,150)(85,151)(86,152)(87,153)(88,154)(89,155)(90,156)(91,144)(92,127)(93,128)(94,129)(95,130)(96,118)(97,119)(98,120)(99,121)(100,122)(101,123)(102,124)(103,125)(104,126) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13),(14,15,16,17,18,19,20,21,22,23,24,25,26),(27,28,29,30,31,32,33,34,35,36,37,38,39),(40,41,42,43,44,45,46,47,48,49,50,51,52),(53,54,55,56,57,58,59,60,61,62,63,64,65),(66,67,68,69,70,71,72,73,74,75,76,77,78),(79,80,81,82,83,84,85,86,87,88,89,90,91),(92,93,94,95,96,97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112,113,114,115,116,117),(118,119,120,121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140,141,142,143),(144,145,146,147,148,149,150,151,152,153,154,155,156)], [(1,63,28),(2,64,29),(3,65,30),(4,53,31),(5,54,32),(6,55,33),(7,56,34),(8,57,35),(9,58,36),(10,59,37),(11,60,38),(12,61,39),(13,62,27),(14,147,120),(15,148,121),(16,149,122),(17,150,123),(18,151,124),(19,152,125),(20,153,126),(21,154,127),(22,155,128),(23,156,129),(24,144,130),(25,145,118),(26,146,119),(40,75,132),(41,76,133),(42,77,134),(43,78,135),(44,66,136),(45,67,137),(46,68,138),(47,69,139),(48,70,140),(49,71,141),(50,72,142),(51,73,143),(52,74,131),(79,107,96),(80,108,97),(81,109,98),(82,110,99),(83,111,100),(84,112,101),(85,113,102),(86,114,103),(87,115,104),(88,116,92),(89,117,93),(90,105,94),(91,106,95)], [(1,146,131,80),(2,147,132,81),(3,148,133,82),(4,149,134,83),(5,150,135,84),(6,151,136,85),(7,152,137,86),(8,153,138,87),(9,154,139,88),(10,155,140,89),(11,156,141,90),(12,144,142,91),(13,145,143,79),(14,40,98,64),(15,41,99,65),(16,42,100,53),(17,43,101,54),(18,44,102,55),(19,45,103,56),(20,46,104,57),(21,47,92,58),(22,48,93,59),(23,49,94,60),(24,50,95,61),(25,51,96,62),(26,52,97,63),(27,118,73,107),(28,119,74,108),(29,120,75,109),(30,121,76,110),(31,122,77,111),(32,123,78,112),(33,124,66,113),(34,125,67,114),(35,126,68,115),(36,127,69,116),(37,128,70,117),(38,129,71,105),(39,130,72,106)], [(14,109),(15,110),(16,111),(17,112),(18,113),(19,114),(20,115),(21,116),(22,117),(23,105),(24,106),(25,107),(26,108),(27,62),(28,63),(29,64),(30,65),(31,53),(32,54),(33,55),(34,56),(35,57),(36,58),(37,59),(38,60),(39,61),(40,75),(41,76),(42,77),(43,78),(44,66),(45,67),(46,68),(47,69),(48,70),(49,71),(50,72),(51,73),(52,74),(79,145),(80,146),(81,147),(82,148),(83,149),(84,150),(85,151),(86,152),(87,153),(88,154),(89,155),(90,156),(91,144),(92,127),(93,128),(94,129),(95,130),(96,118),(97,119),(98,120),(99,121),(100,122),(101,123),(102,124),(103,125),(104,126)]])
117 conjugacy classes
class | 1 | 2A | 2B | 2C | 3 | 4 | 6A | 6B | 6C | 13A | ··· | 13L | 26A | ··· | 26L | 26M | ··· | 26X | 26Y | ··· | 26AJ | 39A | ··· | 39L | 52A | ··· | 52L | 78A | ··· | 78AJ |
order | 1 | 2 | 2 | 2 | 3 | 4 | 6 | 6 | 6 | 13 | ··· | 13 | 26 | ··· | 26 | 26 | ··· | 26 | 26 | ··· | 26 | 39 | ··· | 39 | 52 | ··· | 52 | 78 | ··· | 78 |
size | 1 | 1 | 2 | 6 | 2 | 6 | 2 | 2 | 2 | 1 | ··· | 1 | 1 | ··· | 1 | 2 | ··· | 2 | 6 | ··· | 6 | 2 | ··· | 2 | 6 | ··· | 6 | 2 | ··· | 2 |
117 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | + | + | |||||||||
image | C1 | C2 | C2 | C2 | C13 | C26 | C26 | C26 | S3 | D4 | D6 | C3⋊D4 | S3×C13 | D4×C13 | S3×C26 | C13×C3⋊D4 |
kernel | C13×C3⋊D4 | Dic3×C13 | S3×C26 | C2×C78 | C3⋊D4 | Dic3 | D6 | C2×C6 | C2×C26 | C39 | C26 | C13 | C22 | C3 | C2 | C1 |
# reps | 1 | 1 | 1 | 1 | 12 | 12 | 12 | 12 | 1 | 1 | 1 | 2 | 12 | 12 | 12 | 24 |
Matrix representation of C13×C3⋊D4 ►in GL2(𝔽157) generated by
130 | 0 |
0 | 130 |
156 | 156 |
1 | 0 |
44 | 88 |
44 | 113 |
1 | 0 |
156 | 156 |
G:=sub<GL(2,GF(157))| [130,0,0,130],[156,1,156,0],[44,44,88,113],[1,156,0,156] >;
C13×C3⋊D4 in GAP, Magma, Sage, TeX
C_{13}\times C_3\rtimes D_4
% in TeX
G:=Group("C13xC3:D4");
// GroupNames label
G:=SmallGroup(312,36);
// by ID
G=gap.SmallGroup(312,36);
# by ID
G:=PCGroup([5,-2,-2,-13,-2,-3,541,5204]);
// Polycyclic
G:=Group<a,b,c,d|a^13=b^3=c^4=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=d*b*d=b^-1,d*c*d=c^-1>;
// generators/relations
Export