Copied to
clipboard

G = C2×S3×D13order 312 = 23·3·13

Direct product of C2, S3 and D13

direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: C2×S3×D13, C39⋊C23, C61D26, C261D6, C78⋊C22, D785C2, D39⋊C22, (S3×C26)⋊3C2, (C6×D13)⋊3C2, (S3×C13)⋊C22, C131(C22×S3), (C3×D13)⋊C22, C31(C22×D13), SmallGroup(312,54)

Series: Derived Chief Lower central Upper central

C1C39 — C2×S3×D13
C1C13C39C3×D13S3×D13 — C2×S3×D13
C39 — C2×S3×D13
C1C2

Generators and relations for C2×S3×D13
 G = < a,b,c,d,e | a2=b3=c2=d13=e2=1, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ce=ec, ede=d-1 >

Subgroups: 564 in 64 conjugacy classes, 28 normal (14 characteristic)
C1, C2, C2, C3, C22, S3, S3, C6, C6, C23, D6, D6, C2×C6, C13, C22×S3, D13, D13, C26, C26, C39, D26, D26, C2×C26, S3×C13, C3×D13, D39, C78, C22×D13, S3×D13, C6×D13, S3×C26, D78, C2×S3×D13
Quotients: C1, C2, C22, S3, C23, D6, C22×S3, D13, D26, C22×D13, S3×D13, C2×S3×D13

Smallest permutation representation of C2×S3×D13
On 78 points
Generators in S78
(1 51)(2 52)(3 40)(4 41)(5 42)(6 43)(7 44)(8 45)(9 46)(10 47)(11 48)(12 49)(13 50)(14 54)(15 55)(16 56)(17 57)(18 58)(19 59)(20 60)(21 61)(22 62)(23 63)(24 64)(25 65)(26 53)(27 76)(28 77)(29 78)(30 66)(31 67)(32 68)(33 69)(34 70)(35 71)(36 72)(37 73)(38 74)(39 75)
(1 23 27)(2 24 28)(3 25 29)(4 26 30)(5 14 31)(6 15 32)(7 16 33)(8 17 34)(9 18 35)(10 19 36)(11 20 37)(12 21 38)(13 22 39)(40 65 78)(41 53 66)(42 54 67)(43 55 68)(44 56 69)(45 57 70)(46 58 71)(47 59 72)(48 60 73)(49 61 74)(50 62 75)(51 63 76)(52 64 77)
(14 31)(15 32)(16 33)(17 34)(18 35)(19 36)(20 37)(21 38)(22 39)(23 27)(24 28)(25 29)(26 30)(53 66)(54 67)(55 68)(56 69)(57 70)(58 71)(59 72)(60 73)(61 74)(62 75)(63 76)(64 77)(65 78)
(1 2 3 4 5 6 7 8 9 10 11 12 13)(14 15 16 17 18 19 20 21 22 23 24 25 26)(27 28 29 30 31 32 33 34 35 36 37 38 39)(40 41 42 43 44 45 46 47 48 49 50 51 52)(53 54 55 56 57 58 59 60 61 62 63 64 65)(66 67 68 69 70 71 72 73 74 75 76 77 78)
(1 13)(2 12)(3 11)(4 10)(5 9)(6 8)(14 18)(15 17)(19 26)(20 25)(21 24)(22 23)(27 39)(28 38)(29 37)(30 36)(31 35)(32 34)(40 48)(41 47)(42 46)(43 45)(49 52)(50 51)(53 59)(54 58)(55 57)(60 65)(61 64)(62 63)(66 72)(67 71)(68 70)(73 78)(74 77)(75 76)

G:=sub<Sym(78)| (1,51)(2,52)(3,40)(4,41)(5,42)(6,43)(7,44)(8,45)(9,46)(10,47)(11,48)(12,49)(13,50)(14,54)(15,55)(16,56)(17,57)(18,58)(19,59)(20,60)(21,61)(22,62)(23,63)(24,64)(25,65)(26,53)(27,76)(28,77)(29,78)(30,66)(31,67)(32,68)(33,69)(34,70)(35,71)(36,72)(37,73)(38,74)(39,75), (1,23,27)(2,24,28)(3,25,29)(4,26,30)(5,14,31)(6,15,32)(7,16,33)(8,17,34)(9,18,35)(10,19,36)(11,20,37)(12,21,38)(13,22,39)(40,65,78)(41,53,66)(42,54,67)(43,55,68)(44,56,69)(45,57,70)(46,58,71)(47,59,72)(48,60,73)(49,61,74)(50,62,75)(51,63,76)(52,64,77), (14,31)(15,32)(16,33)(17,34)(18,35)(19,36)(20,37)(21,38)(22,39)(23,27)(24,28)(25,29)(26,30)(53,66)(54,67)(55,68)(56,69)(57,70)(58,71)(59,72)(60,73)(61,74)(62,75)(63,76)(64,77)(65,78), (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65)(66,67,68,69,70,71,72,73,74,75,76,77,78), (1,13)(2,12)(3,11)(4,10)(5,9)(6,8)(14,18)(15,17)(19,26)(20,25)(21,24)(22,23)(27,39)(28,38)(29,37)(30,36)(31,35)(32,34)(40,48)(41,47)(42,46)(43,45)(49,52)(50,51)(53,59)(54,58)(55,57)(60,65)(61,64)(62,63)(66,72)(67,71)(68,70)(73,78)(74,77)(75,76)>;

G:=Group( (1,51)(2,52)(3,40)(4,41)(5,42)(6,43)(7,44)(8,45)(9,46)(10,47)(11,48)(12,49)(13,50)(14,54)(15,55)(16,56)(17,57)(18,58)(19,59)(20,60)(21,61)(22,62)(23,63)(24,64)(25,65)(26,53)(27,76)(28,77)(29,78)(30,66)(31,67)(32,68)(33,69)(34,70)(35,71)(36,72)(37,73)(38,74)(39,75), (1,23,27)(2,24,28)(3,25,29)(4,26,30)(5,14,31)(6,15,32)(7,16,33)(8,17,34)(9,18,35)(10,19,36)(11,20,37)(12,21,38)(13,22,39)(40,65,78)(41,53,66)(42,54,67)(43,55,68)(44,56,69)(45,57,70)(46,58,71)(47,59,72)(48,60,73)(49,61,74)(50,62,75)(51,63,76)(52,64,77), (14,31)(15,32)(16,33)(17,34)(18,35)(19,36)(20,37)(21,38)(22,39)(23,27)(24,28)(25,29)(26,30)(53,66)(54,67)(55,68)(56,69)(57,70)(58,71)(59,72)(60,73)(61,74)(62,75)(63,76)(64,77)(65,78), (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65)(66,67,68,69,70,71,72,73,74,75,76,77,78), (1,13)(2,12)(3,11)(4,10)(5,9)(6,8)(14,18)(15,17)(19,26)(20,25)(21,24)(22,23)(27,39)(28,38)(29,37)(30,36)(31,35)(32,34)(40,48)(41,47)(42,46)(43,45)(49,52)(50,51)(53,59)(54,58)(55,57)(60,65)(61,64)(62,63)(66,72)(67,71)(68,70)(73,78)(74,77)(75,76) );

G=PermutationGroup([[(1,51),(2,52),(3,40),(4,41),(5,42),(6,43),(7,44),(8,45),(9,46),(10,47),(11,48),(12,49),(13,50),(14,54),(15,55),(16,56),(17,57),(18,58),(19,59),(20,60),(21,61),(22,62),(23,63),(24,64),(25,65),(26,53),(27,76),(28,77),(29,78),(30,66),(31,67),(32,68),(33,69),(34,70),(35,71),(36,72),(37,73),(38,74),(39,75)], [(1,23,27),(2,24,28),(3,25,29),(4,26,30),(5,14,31),(6,15,32),(7,16,33),(8,17,34),(9,18,35),(10,19,36),(11,20,37),(12,21,38),(13,22,39),(40,65,78),(41,53,66),(42,54,67),(43,55,68),(44,56,69),(45,57,70),(46,58,71),(47,59,72),(48,60,73),(49,61,74),(50,62,75),(51,63,76),(52,64,77)], [(14,31),(15,32),(16,33),(17,34),(18,35),(19,36),(20,37),(21,38),(22,39),(23,27),(24,28),(25,29),(26,30),(53,66),(54,67),(55,68),(56,69),(57,70),(58,71),(59,72),(60,73),(61,74),(62,75),(63,76),(64,77),(65,78)], [(1,2,3,4,5,6,7,8,9,10,11,12,13),(14,15,16,17,18,19,20,21,22,23,24,25,26),(27,28,29,30,31,32,33,34,35,36,37,38,39),(40,41,42,43,44,45,46,47,48,49,50,51,52),(53,54,55,56,57,58,59,60,61,62,63,64,65),(66,67,68,69,70,71,72,73,74,75,76,77,78)], [(1,13),(2,12),(3,11),(4,10),(5,9),(6,8),(14,18),(15,17),(19,26),(20,25),(21,24),(22,23),(27,39),(28,38),(29,37),(30,36),(31,35),(32,34),(40,48),(41,47),(42,46),(43,45),(49,52),(50,51),(53,59),(54,58),(55,57),(60,65),(61,64),(62,63),(66,72),(67,71),(68,70),(73,78),(74,77),(75,76)]])

48 conjugacy classes

class 1 2A2B2C2D2E2F2G 3 6A6B6C13A···13F26A···26F26G···26R39A···39F78A···78F
order12222222366613···1326···2626···2639···3978···78
size1133131339392226262···22···26···64···44···4

48 irreducible representations

dim1111122222244
type+++++++++++++
imageC1C2C2C2C2S3D6D6D13D26D26S3×D13C2×S3×D13
kernelC2×S3×D13S3×D13C6×D13S3×C26D78D26D13C26D6S3C6C2C1
# reps14111121612666

Matrix representation of C2×S3×D13 in GL5(𝔽79)

780000
01000
00100
00010
00001
,
10000
01000
00100
0007878
00010
,
780000
01000
00100
00010
0007878
,
10000
018100
078000
00010
00001
,
780000
0507200
0412900
00010
00001

G:=sub<GL(5,GF(79))| [78,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,78,1,0,0,0,78,0],[78,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,78,0,0,0,0,78],[1,0,0,0,0,0,18,78,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,1],[78,0,0,0,0,0,50,41,0,0,0,72,29,0,0,0,0,0,1,0,0,0,0,0,1] >;

C2×S3×D13 in GAP, Magma, Sage, TeX

C_2\times S_3\times D_{13}
% in TeX

G:=Group("C2xS3xD13");
// GroupNames label

G:=SmallGroup(312,54);
// by ID

G=gap.SmallGroup(312,54);
# by ID

G:=PCGroup([5,-2,-2,-2,-3,-13,168,7204]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^3=c^2=d^13=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations

׿
×
𝔽