Extensions 1→N→G→Q→1 with N=C152 and Q=C2

Direct product G=N×Q with N=C152 and Q=C2
dρLabelID
C2×C152304C2xC152304,22

Semidirect products G=N:Q with N=C152 and Q=C2
extensionφ:Q→Aut NdρLabelID
C1521C2 = D152φ: C2/C1C2 ⊆ Aut C1521522+C152:1C2304,6
C1522C2 = C152⋊C2φ: C2/C1C2 ⊆ Aut C1521522C152:2C2304,5
C1523C2 = C8×D19φ: C2/C1C2 ⊆ Aut C1521522C152:3C2304,3
C1524C2 = C8⋊D19φ: C2/C1C2 ⊆ Aut C1521522C152:4C2304,4
C1525C2 = D8×C19φ: C2/C1C2 ⊆ Aut C1521522C152:5C2304,24
C1526C2 = SD16×C19φ: C2/C1C2 ⊆ Aut C1521522C152:6C2304,25
C1527C2 = M4(2)×C19φ: C2/C1C2 ⊆ Aut C1521522C152:7C2304,23

Non-split extensions G=N.Q with N=C152 and Q=C2
extensionφ:Q→Aut NdρLabelID
C152.1C2 = Dic76φ: C2/C1C2 ⊆ Aut C1523042-C152.1C2304,7
C152.2C2 = C19⋊C16φ: C2/C1C2 ⊆ Aut C1523042C152.2C2304,1
C152.3C2 = Q16×C19φ: C2/C1C2 ⊆ Aut C1523042C152.3C2304,26

׿
×
𝔽