Copied to
clipboard

G = SD16×C19order 304 = 24·19

Direct product of C19 and SD16

direct product, metacyclic, nilpotent (class 3), monomial, 2-elementary

Aliases: SD16×C19, Q8⋊C38, C82C38, D4.C38, C1526C2, C38.15D4, C76.18C22, C4.2(C2×C38), (Q8×C19)⋊4C2, C2.4(D4×C19), (D4×C19).2C2, SmallGroup(304,25)

Series: Derived Chief Lower central Upper central

C1C4 — SD16×C19
C1C2C4C76Q8×C19 — SD16×C19
C1C2C4 — SD16×C19
C1C38C76 — SD16×C19

Generators and relations for SD16×C19
 G = < a,b,c | a19=b8=c2=1, ab=ba, ac=ca, cbc=b3 >

4C2
2C4
2C22
4C38
2C76
2C2×C38

Smallest permutation representation of SD16×C19
On 152 points
Generators in S152
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19)(20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38)(39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57)(58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76)(77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95)(96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114)(115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133)(134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152)
(1 42 25 105 66 95 140 127)(2 43 26 106 67 77 141 128)(3 44 27 107 68 78 142 129)(4 45 28 108 69 79 143 130)(5 46 29 109 70 80 144 131)(6 47 30 110 71 81 145 132)(7 48 31 111 72 82 146 133)(8 49 32 112 73 83 147 115)(9 50 33 113 74 84 148 116)(10 51 34 114 75 85 149 117)(11 52 35 96 76 86 150 118)(12 53 36 97 58 87 151 119)(13 54 37 98 59 88 152 120)(14 55 38 99 60 89 134 121)(15 56 20 100 61 90 135 122)(16 57 21 101 62 91 136 123)(17 39 22 102 63 92 137 124)(18 40 23 103 64 93 138 125)(19 41 24 104 65 94 139 126)
(20 135)(21 136)(22 137)(23 138)(24 139)(25 140)(26 141)(27 142)(28 143)(29 144)(30 145)(31 146)(32 147)(33 148)(34 149)(35 150)(36 151)(37 152)(38 134)(39 102)(40 103)(41 104)(42 105)(43 106)(44 107)(45 108)(46 109)(47 110)(48 111)(49 112)(50 113)(51 114)(52 96)(53 97)(54 98)(55 99)(56 100)(57 101)(77 128)(78 129)(79 130)(80 131)(81 132)(82 133)(83 115)(84 116)(85 117)(86 118)(87 119)(88 120)(89 121)(90 122)(91 123)(92 124)(93 125)(94 126)(95 127)

G:=sub<Sym(152)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19)(20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38)(39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57)(58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76)(77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95)(96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114)(115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133)(134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152), (1,42,25,105,66,95,140,127)(2,43,26,106,67,77,141,128)(3,44,27,107,68,78,142,129)(4,45,28,108,69,79,143,130)(5,46,29,109,70,80,144,131)(6,47,30,110,71,81,145,132)(7,48,31,111,72,82,146,133)(8,49,32,112,73,83,147,115)(9,50,33,113,74,84,148,116)(10,51,34,114,75,85,149,117)(11,52,35,96,76,86,150,118)(12,53,36,97,58,87,151,119)(13,54,37,98,59,88,152,120)(14,55,38,99,60,89,134,121)(15,56,20,100,61,90,135,122)(16,57,21,101,62,91,136,123)(17,39,22,102,63,92,137,124)(18,40,23,103,64,93,138,125)(19,41,24,104,65,94,139,126), (20,135)(21,136)(22,137)(23,138)(24,139)(25,140)(26,141)(27,142)(28,143)(29,144)(30,145)(31,146)(32,147)(33,148)(34,149)(35,150)(36,151)(37,152)(38,134)(39,102)(40,103)(41,104)(42,105)(43,106)(44,107)(45,108)(46,109)(47,110)(48,111)(49,112)(50,113)(51,114)(52,96)(53,97)(54,98)(55,99)(56,100)(57,101)(77,128)(78,129)(79,130)(80,131)(81,132)(82,133)(83,115)(84,116)(85,117)(86,118)(87,119)(88,120)(89,121)(90,122)(91,123)(92,124)(93,125)(94,126)(95,127)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19)(20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38)(39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57)(58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76)(77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95)(96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114)(115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133)(134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152), (1,42,25,105,66,95,140,127)(2,43,26,106,67,77,141,128)(3,44,27,107,68,78,142,129)(4,45,28,108,69,79,143,130)(5,46,29,109,70,80,144,131)(6,47,30,110,71,81,145,132)(7,48,31,111,72,82,146,133)(8,49,32,112,73,83,147,115)(9,50,33,113,74,84,148,116)(10,51,34,114,75,85,149,117)(11,52,35,96,76,86,150,118)(12,53,36,97,58,87,151,119)(13,54,37,98,59,88,152,120)(14,55,38,99,60,89,134,121)(15,56,20,100,61,90,135,122)(16,57,21,101,62,91,136,123)(17,39,22,102,63,92,137,124)(18,40,23,103,64,93,138,125)(19,41,24,104,65,94,139,126), (20,135)(21,136)(22,137)(23,138)(24,139)(25,140)(26,141)(27,142)(28,143)(29,144)(30,145)(31,146)(32,147)(33,148)(34,149)(35,150)(36,151)(37,152)(38,134)(39,102)(40,103)(41,104)(42,105)(43,106)(44,107)(45,108)(46,109)(47,110)(48,111)(49,112)(50,113)(51,114)(52,96)(53,97)(54,98)(55,99)(56,100)(57,101)(77,128)(78,129)(79,130)(80,131)(81,132)(82,133)(83,115)(84,116)(85,117)(86,118)(87,119)(88,120)(89,121)(90,122)(91,123)(92,124)(93,125)(94,126)(95,127) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19),(20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38),(39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57),(58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76),(77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95),(96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114),(115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133),(134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152)], [(1,42,25,105,66,95,140,127),(2,43,26,106,67,77,141,128),(3,44,27,107,68,78,142,129),(4,45,28,108,69,79,143,130),(5,46,29,109,70,80,144,131),(6,47,30,110,71,81,145,132),(7,48,31,111,72,82,146,133),(8,49,32,112,73,83,147,115),(9,50,33,113,74,84,148,116),(10,51,34,114,75,85,149,117),(11,52,35,96,76,86,150,118),(12,53,36,97,58,87,151,119),(13,54,37,98,59,88,152,120),(14,55,38,99,60,89,134,121),(15,56,20,100,61,90,135,122),(16,57,21,101,62,91,136,123),(17,39,22,102,63,92,137,124),(18,40,23,103,64,93,138,125),(19,41,24,104,65,94,139,126)], [(20,135),(21,136),(22,137),(23,138),(24,139),(25,140),(26,141),(27,142),(28,143),(29,144),(30,145),(31,146),(32,147),(33,148),(34,149),(35,150),(36,151),(37,152),(38,134),(39,102),(40,103),(41,104),(42,105),(43,106),(44,107),(45,108),(46,109),(47,110),(48,111),(49,112),(50,113),(51,114),(52,96),(53,97),(54,98),(55,99),(56,100),(57,101),(77,128),(78,129),(79,130),(80,131),(81,132),(82,133),(83,115),(84,116),(85,117),(86,118),(87,119),(88,120),(89,121),(90,122),(91,123),(92,124),(93,125),(94,126),(95,127)]])

133 conjugacy classes

class 1 2A2B4A4B8A8B19A···19R38A···38R38S···38AJ76A···76R76S···76AJ152A···152AJ
order122448819···1938···3838···3876···7676···76152···152
size11424221···11···14···42···24···42···2

133 irreducible representations

dim111111112222
type+++++
imageC1C2C2C2C19C38C38C38D4SD16D4×C19SD16×C19
kernelSD16×C19C152D4×C19Q8×C19SD16C8D4Q8C38C19C2C1
# reps111118181818121836

Matrix representation of SD16×C19 in GL2(𝔽457) generated by

2560
0256
,
210247
210210
,
10
0456
G:=sub<GL(2,GF(457))| [256,0,0,256],[210,210,247,210],[1,0,0,456] >;

SD16×C19 in GAP, Magma, Sage, TeX

{\rm SD}_{16}\times C_{19}
% in TeX

G:=Group("SD16xC19");
// GroupNames label

G:=SmallGroup(304,25);
// by ID

G=gap.SmallGroup(304,25);
# by ID

G:=PCGroup([5,-2,-2,-19,-2,-2,760,781,4563,2288,58]);
// Polycyclic

G:=Group<a,b,c|a^19=b^8=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^3>;
// generators/relations

Export

Subgroup lattice of SD16×C19 in TeX

׿
×
𝔽