direct product, metacyclic, nilpotent (class 3), monomial, 2-elementary
Aliases: SD16×C19, Q8⋊C38, C8⋊2C38, D4.C38, C152⋊6C2, C38.15D4, C76.18C22, C4.2(C2×C38), (Q8×C19)⋊4C2, C2.4(D4×C19), (D4×C19).2C2, SmallGroup(304,25)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for SD16×C19
G = < a,b,c | a19=b8=c2=1, ab=ba, ac=ca, cbc=b3 >
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19)(20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38)(39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57)(58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76)(77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95)(96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114)(115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133)(134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152)
(1 42 25 105 66 95 140 127)(2 43 26 106 67 77 141 128)(3 44 27 107 68 78 142 129)(4 45 28 108 69 79 143 130)(5 46 29 109 70 80 144 131)(6 47 30 110 71 81 145 132)(7 48 31 111 72 82 146 133)(8 49 32 112 73 83 147 115)(9 50 33 113 74 84 148 116)(10 51 34 114 75 85 149 117)(11 52 35 96 76 86 150 118)(12 53 36 97 58 87 151 119)(13 54 37 98 59 88 152 120)(14 55 38 99 60 89 134 121)(15 56 20 100 61 90 135 122)(16 57 21 101 62 91 136 123)(17 39 22 102 63 92 137 124)(18 40 23 103 64 93 138 125)(19 41 24 104 65 94 139 126)
(20 135)(21 136)(22 137)(23 138)(24 139)(25 140)(26 141)(27 142)(28 143)(29 144)(30 145)(31 146)(32 147)(33 148)(34 149)(35 150)(36 151)(37 152)(38 134)(39 102)(40 103)(41 104)(42 105)(43 106)(44 107)(45 108)(46 109)(47 110)(48 111)(49 112)(50 113)(51 114)(52 96)(53 97)(54 98)(55 99)(56 100)(57 101)(77 128)(78 129)(79 130)(80 131)(81 132)(82 133)(83 115)(84 116)(85 117)(86 118)(87 119)(88 120)(89 121)(90 122)(91 123)(92 124)(93 125)(94 126)(95 127)
G:=sub<Sym(152)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19)(20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38)(39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57)(58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76)(77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95)(96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114)(115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133)(134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152), (1,42,25,105,66,95,140,127)(2,43,26,106,67,77,141,128)(3,44,27,107,68,78,142,129)(4,45,28,108,69,79,143,130)(5,46,29,109,70,80,144,131)(6,47,30,110,71,81,145,132)(7,48,31,111,72,82,146,133)(8,49,32,112,73,83,147,115)(9,50,33,113,74,84,148,116)(10,51,34,114,75,85,149,117)(11,52,35,96,76,86,150,118)(12,53,36,97,58,87,151,119)(13,54,37,98,59,88,152,120)(14,55,38,99,60,89,134,121)(15,56,20,100,61,90,135,122)(16,57,21,101,62,91,136,123)(17,39,22,102,63,92,137,124)(18,40,23,103,64,93,138,125)(19,41,24,104,65,94,139,126), (20,135)(21,136)(22,137)(23,138)(24,139)(25,140)(26,141)(27,142)(28,143)(29,144)(30,145)(31,146)(32,147)(33,148)(34,149)(35,150)(36,151)(37,152)(38,134)(39,102)(40,103)(41,104)(42,105)(43,106)(44,107)(45,108)(46,109)(47,110)(48,111)(49,112)(50,113)(51,114)(52,96)(53,97)(54,98)(55,99)(56,100)(57,101)(77,128)(78,129)(79,130)(80,131)(81,132)(82,133)(83,115)(84,116)(85,117)(86,118)(87,119)(88,120)(89,121)(90,122)(91,123)(92,124)(93,125)(94,126)(95,127)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19)(20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38)(39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57)(58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76)(77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95)(96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114)(115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133)(134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152), (1,42,25,105,66,95,140,127)(2,43,26,106,67,77,141,128)(3,44,27,107,68,78,142,129)(4,45,28,108,69,79,143,130)(5,46,29,109,70,80,144,131)(6,47,30,110,71,81,145,132)(7,48,31,111,72,82,146,133)(8,49,32,112,73,83,147,115)(9,50,33,113,74,84,148,116)(10,51,34,114,75,85,149,117)(11,52,35,96,76,86,150,118)(12,53,36,97,58,87,151,119)(13,54,37,98,59,88,152,120)(14,55,38,99,60,89,134,121)(15,56,20,100,61,90,135,122)(16,57,21,101,62,91,136,123)(17,39,22,102,63,92,137,124)(18,40,23,103,64,93,138,125)(19,41,24,104,65,94,139,126), (20,135)(21,136)(22,137)(23,138)(24,139)(25,140)(26,141)(27,142)(28,143)(29,144)(30,145)(31,146)(32,147)(33,148)(34,149)(35,150)(36,151)(37,152)(38,134)(39,102)(40,103)(41,104)(42,105)(43,106)(44,107)(45,108)(46,109)(47,110)(48,111)(49,112)(50,113)(51,114)(52,96)(53,97)(54,98)(55,99)(56,100)(57,101)(77,128)(78,129)(79,130)(80,131)(81,132)(82,133)(83,115)(84,116)(85,117)(86,118)(87,119)(88,120)(89,121)(90,122)(91,123)(92,124)(93,125)(94,126)(95,127) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19),(20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38),(39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57),(58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76),(77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95),(96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114),(115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133),(134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152)], [(1,42,25,105,66,95,140,127),(2,43,26,106,67,77,141,128),(3,44,27,107,68,78,142,129),(4,45,28,108,69,79,143,130),(5,46,29,109,70,80,144,131),(6,47,30,110,71,81,145,132),(7,48,31,111,72,82,146,133),(8,49,32,112,73,83,147,115),(9,50,33,113,74,84,148,116),(10,51,34,114,75,85,149,117),(11,52,35,96,76,86,150,118),(12,53,36,97,58,87,151,119),(13,54,37,98,59,88,152,120),(14,55,38,99,60,89,134,121),(15,56,20,100,61,90,135,122),(16,57,21,101,62,91,136,123),(17,39,22,102,63,92,137,124),(18,40,23,103,64,93,138,125),(19,41,24,104,65,94,139,126)], [(20,135),(21,136),(22,137),(23,138),(24,139),(25,140),(26,141),(27,142),(28,143),(29,144),(30,145),(31,146),(32,147),(33,148),(34,149),(35,150),(36,151),(37,152),(38,134),(39,102),(40,103),(41,104),(42,105),(43,106),(44,107),(45,108),(46,109),(47,110),(48,111),(49,112),(50,113),(51,114),(52,96),(53,97),(54,98),(55,99),(56,100),(57,101),(77,128),(78,129),(79,130),(80,131),(81,132),(82,133),(83,115),(84,116),(85,117),(86,118),(87,119),(88,120),(89,121),(90,122),(91,123),(92,124),(93,125),(94,126),(95,127)]])
133 conjugacy classes
| class | 1 | 2A | 2B | 4A | 4B | 8A | 8B | 19A | ··· | 19R | 38A | ··· | 38R | 38S | ··· | 38AJ | 76A | ··· | 76R | 76S | ··· | 76AJ | 152A | ··· | 152AJ |
| order | 1 | 2 | 2 | 4 | 4 | 8 | 8 | 19 | ··· | 19 | 38 | ··· | 38 | 38 | ··· | 38 | 76 | ··· | 76 | 76 | ··· | 76 | 152 | ··· | 152 |
| size | 1 | 1 | 4 | 2 | 4 | 2 | 2 | 1 | ··· | 1 | 1 | ··· | 1 | 4 | ··· | 4 | 2 | ··· | 2 | 4 | ··· | 4 | 2 | ··· | 2 |
133 irreducible representations
| dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 |
| type | + | + | + | + | + | |||||||
| image | C1 | C2 | C2 | C2 | C19 | C38 | C38 | C38 | D4 | SD16 | D4×C19 | SD16×C19 |
| kernel | SD16×C19 | C152 | D4×C19 | Q8×C19 | SD16 | C8 | D4 | Q8 | C38 | C19 | C2 | C1 |
| # reps | 1 | 1 | 1 | 1 | 18 | 18 | 18 | 18 | 1 | 2 | 18 | 36 |
Matrix representation of SD16×C19 ►in GL2(𝔽457) generated by
| 256 | 0 |
| 0 | 256 |
| 210 | 247 |
| 210 | 210 |
| 1 | 0 |
| 0 | 456 |
G:=sub<GL(2,GF(457))| [256,0,0,256],[210,210,247,210],[1,0,0,456] >;
SD16×C19 in GAP, Magma, Sage, TeX
{\rm SD}_{16}\times C_{19} % in TeX
G:=Group("SD16xC19"); // GroupNames label
G:=SmallGroup(304,25);
// by ID
G=gap.SmallGroup(304,25);
# by ID
G:=PCGroup([5,-2,-2,-19,-2,-2,760,781,4563,2288,58]);
// Polycyclic
G:=Group<a,b,c|a^19=b^8=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^3>;
// generators/relations
Export