Copied to
clipboard

G = D8×C19order 304 = 24·19

Direct product of C19 and D8

direct product, metacyclic, nilpotent (class 3), monomial, 2-elementary

Aliases: D8×C19, D4⋊C38, C81C38, C1525C2, C38.14D4, C76.17C22, (D4×C19)⋊4C2, C4.1(C2×C38), C2.3(D4×C19), SmallGroup(304,24)

Series: Derived Chief Lower central Upper central

C1C4 — D8×C19
C1C2C4C76D4×C19 — D8×C19
C1C2C4 — D8×C19
C1C38C76 — D8×C19

Generators and relations for D8×C19
 G = < a,b,c | a19=b8=c2=1, ab=ba, ac=ca, cbc=b-1 >

4C2
4C2
2C22
2C22
4C38
4C38
2C2×C38
2C2×C38

Smallest permutation representation of D8×C19
On 152 points
Generators in S152
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19)(20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38)(39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57)(58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76)(77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95)(96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114)(115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133)(134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152)
(1 38 60 121 112 79 143 39)(2 20 61 122 113 80 144 40)(3 21 62 123 114 81 145 41)(4 22 63 124 96 82 146 42)(5 23 64 125 97 83 147 43)(6 24 65 126 98 84 148 44)(7 25 66 127 99 85 149 45)(8 26 67 128 100 86 150 46)(9 27 68 129 101 87 151 47)(10 28 69 130 102 88 152 48)(11 29 70 131 103 89 134 49)(12 30 71 132 104 90 135 50)(13 31 72 133 105 91 136 51)(14 32 73 115 106 92 137 52)(15 33 74 116 107 93 138 53)(16 34 75 117 108 94 139 54)(17 35 76 118 109 95 140 55)(18 36 58 119 110 77 141 56)(19 37 59 120 111 78 142 57)
(1 39)(2 40)(3 41)(4 42)(5 43)(6 44)(7 45)(8 46)(9 47)(10 48)(11 49)(12 50)(13 51)(14 52)(15 53)(16 54)(17 55)(18 56)(19 57)(20 144)(21 145)(22 146)(23 147)(24 148)(25 149)(26 150)(27 151)(28 152)(29 134)(30 135)(31 136)(32 137)(33 138)(34 139)(35 140)(36 141)(37 142)(38 143)(58 77)(59 78)(60 79)(61 80)(62 81)(63 82)(64 83)(65 84)(66 85)(67 86)(68 87)(69 88)(70 89)(71 90)(72 91)(73 92)(74 93)(75 94)(76 95)(96 124)(97 125)(98 126)(99 127)(100 128)(101 129)(102 130)(103 131)(104 132)(105 133)(106 115)(107 116)(108 117)(109 118)(110 119)(111 120)(112 121)(113 122)(114 123)

G:=sub<Sym(152)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19)(20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38)(39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57)(58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76)(77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95)(96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114)(115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133)(134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152), (1,38,60,121,112,79,143,39)(2,20,61,122,113,80,144,40)(3,21,62,123,114,81,145,41)(4,22,63,124,96,82,146,42)(5,23,64,125,97,83,147,43)(6,24,65,126,98,84,148,44)(7,25,66,127,99,85,149,45)(8,26,67,128,100,86,150,46)(9,27,68,129,101,87,151,47)(10,28,69,130,102,88,152,48)(11,29,70,131,103,89,134,49)(12,30,71,132,104,90,135,50)(13,31,72,133,105,91,136,51)(14,32,73,115,106,92,137,52)(15,33,74,116,107,93,138,53)(16,34,75,117,108,94,139,54)(17,35,76,118,109,95,140,55)(18,36,58,119,110,77,141,56)(19,37,59,120,111,78,142,57), (1,39)(2,40)(3,41)(4,42)(5,43)(6,44)(7,45)(8,46)(9,47)(10,48)(11,49)(12,50)(13,51)(14,52)(15,53)(16,54)(17,55)(18,56)(19,57)(20,144)(21,145)(22,146)(23,147)(24,148)(25,149)(26,150)(27,151)(28,152)(29,134)(30,135)(31,136)(32,137)(33,138)(34,139)(35,140)(36,141)(37,142)(38,143)(58,77)(59,78)(60,79)(61,80)(62,81)(63,82)(64,83)(65,84)(66,85)(67,86)(68,87)(69,88)(70,89)(71,90)(72,91)(73,92)(74,93)(75,94)(76,95)(96,124)(97,125)(98,126)(99,127)(100,128)(101,129)(102,130)(103,131)(104,132)(105,133)(106,115)(107,116)(108,117)(109,118)(110,119)(111,120)(112,121)(113,122)(114,123)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19)(20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38)(39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57)(58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76)(77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95)(96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114)(115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133)(134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152), (1,38,60,121,112,79,143,39)(2,20,61,122,113,80,144,40)(3,21,62,123,114,81,145,41)(4,22,63,124,96,82,146,42)(5,23,64,125,97,83,147,43)(6,24,65,126,98,84,148,44)(7,25,66,127,99,85,149,45)(8,26,67,128,100,86,150,46)(9,27,68,129,101,87,151,47)(10,28,69,130,102,88,152,48)(11,29,70,131,103,89,134,49)(12,30,71,132,104,90,135,50)(13,31,72,133,105,91,136,51)(14,32,73,115,106,92,137,52)(15,33,74,116,107,93,138,53)(16,34,75,117,108,94,139,54)(17,35,76,118,109,95,140,55)(18,36,58,119,110,77,141,56)(19,37,59,120,111,78,142,57), (1,39)(2,40)(3,41)(4,42)(5,43)(6,44)(7,45)(8,46)(9,47)(10,48)(11,49)(12,50)(13,51)(14,52)(15,53)(16,54)(17,55)(18,56)(19,57)(20,144)(21,145)(22,146)(23,147)(24,148)(25,149)(26,150)(27,151)(28,152)(29,134)(30,135)(31,136)(32,137)(33,138)(34,139)(35,140)(36,141)(37,142)(38,143)(58,77)(59,78)(60,79)(61,80)(62,81)(63,82)(64,83)(65,84)(66,85)(67,86)(68,87)(69,88)(70,89)(71,90)(72,91)(73,92)(74,93)(75,94)(76,95)(96,124)(97,125)(98,126)(99,127)(100,128)(101,129)(102,130)(103,131)(104,132)(105,133)(106,115)(107,116)(108,117)(109,118)(110,119)(111,120)(112,121)(113,122)(114,123) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19),(20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38),(39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57),(58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76),(77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95),(96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114),(115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133),(134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152)], [(1,38,60,121,112,79,143,39),(2,20,61,122,113,80,144,40),(3,21,62,123,114,81,145,41),(4,22,63,124,96,82,146,42),(5,23,64,125,97,83,147,43),(6,24,65,126,98,84,148,44),(7,25,66,127,99,85,149,45),(8,26,67,128,100,86,150,46),(9,27,68,129,101,87,151,47),(10,28,69,130,102,88,152,48),(11,29,70,131,103,89,134,49),(12,30,71,132,104,90,135,50),(13,31,72,133,105,91,136,51),(14,32,73,115,106,92,137,52),(15,33,74,116,107,93,138,53),(16,34,75,117,108,94,139,54),(17,35,76,118,109,95,140,55),(18,36,58,119,110,77,141,56),(19,37,59,120,111,78,142,57)], [(1,39),(2,40),(3,41),(4,42),(5,43),(6,44),(7,45),(8,46),(9,47),(10,48),(11,49),(12,50),(13,51),(14,52),(15,53),(16,54),(17,55),(18,56),(19,57),(20,144),(21,145),(22,146),(23,147),(24,148),(25,149),(26,150),(27,151),(28,152),(29,134),(30,135),(31,136),(32,137),(33,138),(34,139),(35,140),(36,141),(37,142),(38,143),(58,77),(59,78),(60,79),(61,80),(62,81),(63,82),(64,83),(65,84),(66,85),(67,86),(68,87),(69,88),(70,89),(71,90),(72,91),(73,92),(74,93),(75,94),(76,95),(96,124),(97,125),(98,126),(99,127),(100,128),(101,129),(102,130),(103,131),(104,132),(105,133),(106,115),(107,116),(108,117),(109,118),(110,119),(111,120),(112,121),(113,122),(114,123)]])

133 conjugacy classes

class 1 2A2B2C 4 8A8B19A···19R38A···38R38S···38BB76A···76R152A···152AJ
order122248819···1938···3838···3876···76152···152
size11442221···11···14···42···22···2

133 irreducible representations

dim1111112222
type+++++
imageC1C2C2C19C38C38D4D8D4×C19D8×C19
kernelD8×C19C152D4×C19D8C8D4C38C19C2C1
# reps112181836121836

Matrix representation of D8×C19 in GL2(𝔽457) generated by

2410
0241
,
37740
3770
,
37740
37780
G:=sub<GL(2,GF(457))| [241,0,0,241],[377,377,40,0],[377,377,40,80] >;

D8×C19 in GAP, Magma, Sage, TeX

D_8\times C_{19}
% in TeX

G:=Group("D8xC19");
// GroupNames label

G:=SmallGroup(304,24);
// by ID

G=gap.SmallGroup(304,24);
# by ID

G:=PCGroup([5,-2,-2,-19,-2,-2,781,4563,2288,58]);
// Polycyclic

G:=Group<a,b,c|a^19=b^8=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations

Export

Subgroup lattice of D8×C19 in TeX

׿
×
𝔽