Extensions 1→N→G→Q→1 with N=C4 and Q=C2×C38

Direct product G=N×Q with N=C4 and Q=C2×C38
dρLabelID
C22×C76304C2^2xC76304,37

Semidirect products G=N:Q with N=C4 and Q=C2×C38
extensionφ:Q→Aut NdρLabelID
C4⋊(C2×C38) = D4×C38φ: C2×C38/C38C2 ⊆ Aut C4152C4:(C2xC38)304,38

Non-split extensions G=N.Q with N=C4 and Q=C2×C38
extensionφ:Q→Aut NdρLabelID
C4.1(C2×C38) = D8×C19φ: C2×C38/C38C2 ⊆ Aut C41522C4.1(C2xC38)304,24
C4.2(C2×C38) = SD16×C19φ: C2×C38/C38C2 ⊆ Aut C41522C4.2(C2xC38)304,25
C4.3(C2×C38) = Q16×C19φ: C2×C38/C38C2 ⊆ Aut C43042C4.3(C2xC38)304,26
C4.4(C2×C38) = Q8×C38φ: C2×C38/C38C2 ⊆ Aut C4304C4.4(C2xC38)304,39
C4.5(C2×C38) = C4○D4×C19φ: C2×C38/C38C2 ⊆ Aut C41522C4.5(C2xC38)304,40
C4.6(C2×C38) = M4(2)×C19central extension (φ=1)1522C4.6(C2xC38)304,23

׿
×
𝔽