Extensions 1→N→G→Q→1 with N=C38 and Q=D4

Direct product G=N×Q with N=C38 and Q=D4
dρLabelID
D4×C38152D4xC38304,38

Semidirect products G=N:Q with N=C38 and Q=D4
extensionφ:Q→Aut NdρLabelID
C381D4 = C2×D76φ: D4/C4C2 ⊆ Aut C38152C38:1D4304,29
C382D4 = C2×C19⋊D4φ: D4/C22C2 ⊆ Aut C38152C38:2D4304,36

Non-split extensions G=N.Q with N=C38 and Q=D4
extensionφ:Q→Aut NdρLabelID
C38.1D4 = C152⋊C2φ: D4/C4C2 ⊆ Aut C381522C38.1D4304,5
C38.2D4 = D152φ: D4/C4C2 ⊆ Aut C381522+C38.2D4304,6
C38.3D4 = Dic76φ: D4/C4C2 ⊆ Aut C383042-C38.3D4304,7
C38.4D4 = C76⋊C4φ: D4/C4C2 ⊆ Aut C38304C38.4D4304,12
C38.5D4 = Dic19⋊C4φ: D4/C22C2 ⊆ Aut C38304C38.5D4304,11
C38.6D4 = D38⋊C4φ: D4/C22C2 ⊆ Aut C38152C38.6D4304,13
C38.7D4 = D4⋊D19φ: D4/C22C2 ⊆ Aut C381524+C38.7D4304,14
C38.8D4 = D4.D19φ: D4/C22C2 ⊆ Aut C381524-C38.8D4304,15
C38.9D4 = Q8⋊D19φ: D4/C22C2 ⊆ Aut C381524+C38.9D4304,16
C38.10D4 = C19⋊Q16φ: D4/C22C2 ⊆ Aut C383044-C38.10D4304,17
C38.11D4 = C23.D19φ: D4/C22C2 ⊆ Aut C38152C38.11D4304,18
C38.12D4 = C22⋊C4×C19central extension (φ=1)152C38.12D4304,20
C38.13D4 = C4⋊C4×C19central extension (φ=1)304C38.13D4304,21
C38.14D4 = D8×C19central extension (φ=1)1522C38.14D4304,24
C38.15D4 = SD16×C19central extension (φ=1)1522C38.15D4304,25
C38.16D4 = Q16×C19central extension (φ=1)3042C38.16D4304,26

׿
×
𝔽