Extensions 1→N→G→Q→1 with N=Q8×F5 and Q=C2

Direct product G=N×Q with N=Q8×F5 and Q=C2
dρLabelID
C2×Q8×F580C2xQ8xF5320,1599

Semidirect products G=N:Q with N=Q8×F5 and Q=C2
extensionφ:Q→Out NdρLabelID
(Q8×F5)⋊1C2 = SD16×F5φ: C2/C1C2 ⊆ Out Q8×F5408(Q8xF5):1C2320,1072
(Q8×F5)⋊2C2 = SD16⋊F5φ: C2/C1C2 ⊆ Out Q8×F5408(Q8xF5):2C2320,1073
(Q8×F5)⋊3C2 = D5.2- 1+4φ: C2/C1C2 ⊆ Out Q8×F5808-(Q8xF5):3C2320,1600
(Q8×F5)⋊4C2 = D5.2+ 1+4φ: C2/C1C2 ⊆ Out Q8×F5408(Q8xF5):4C2320,1604
(Q8×F5)⋊5C2 = C4○D4×F5φ: trivial image408(Q8xF5):5C2320,1603

Non-split extensions G=N.Q with N=Q8×F5 and Q=C2
extensionφ:Q→Out NdρLabelID
(Q8×F5).1C2 = Q16×F5φ: C2/C1C2 ⊆ Out Q8×F5808-(Q8xF5).1C2320,1076
(Q8×F5).2C2 = Dic20⋊C4φ: C2/C1C2 ⊆ Out Q8×F5808-(Q8xF5).2C2320,1077

׿
×
𝔽