Copied to
clipboard

G = C2×Q8×F5order 320 = 26·5

Direct product of C2, Q8 and F5

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2×Q8×F5, D10.16C24, D5⋊(C4×Q8), C10⋊(C4×Q8), (Q8×D5)⋊10C4, (Q8×C10)⋊9C4, Dic107(C2×C4), D10.28(C2×Q8), C4⋊F5.11C22, (C2×F5).5C23, C2.14(C23×F5), C4.30(C22×F5), (C2×Dic10)⋊13C4, D5.2(C22×Q8), C20.30(C22×C4), C10.13(C23×C4), (C4×D5).53C23, (C4×F5).15C22, D10.58(C4○D4), (Q8×D5).14C22, D10.48(C22×C4), Dic5.4(C22×C4), C22.59(C22×F5), (C22×F5).25C22, (C22×D5).285C23, C5⋊(C2×C4×Q8), (C2×C4×F5).6C2, (C5×Q8)⋊7(C2×C4), (C2×C4⋊F5).7C2, (C2×Q8×D5).13C2, D5.3(C2×C4○D4), (C2×C4).93(C2×F5), (C2×C20).74(C2×C4), (C4×D5).35(C2×C4), (C2×C4×D5).220C22, (C2×Dic5).82(C2×C4), (C2×C10).103(C22×C4), SmallGroup(320,1599)

Series: Derived Chief Lower central Upper central

C1C10 — C2×Q8×F5
C1C5D5D10C2×F5C22×F5C2×C4×F5 — C2×Q8×F5
C5C10 — C2×Q8×F5
C1C22C2×Q8

Generators and relations for C2×Q8×F5
 G = < a,b,c,d,e | a2=b4=d5=e4=1, c2=b2, ab=ba, ac=ca, ad=da, ae=ea, cbc-1=b-1, bd=db, be=eb, cd=dc, ce=ec, ede-1=d3 >

Subgroups: 890 in 298 conjugacy classes, 156 normal (16 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C5, C2×C4, C2×C4, Q8, Q8, C23, D5, D5, C10, C10, C42, C4⋊C4, C22×C4, C2×Q8, C2×Q8, Dic5, C20, F5, F5, D10, D10, C2×C10, C2×C42, C2×C4⋊C4, C4×Q8, C22×Q8, Dic10, C4×D5, C2×Dic5, C2×C20, C5×Q8, C2×F5, C2×F5, C22×D5, C2×C4×Q8, C4×F5, C4⋊F5, C2×Dic10, C2×C4×D5, Q8×D5, Q8×C10, C22×F5, C22×F5, C2×C4×F5, C2×C4⋊F5, Q8×F5, C2×Q8×D5, C2×Q8×F5
Quotients: C1, C2, C4, C22, C2×C4, Q8, C23, C22×C4, C2×Q8, C4○D4, C24, F5, C4×Q8, C23×C4, C22×Q8, C2×C4○D4, C2×F5, C2×C4×Q8, C22×F5, Q8×F5, C23×F5, C2×Q8×F5

Smallest permutation representation of C2×Q8×F5
On 80 points
Generators in S80
(1 41)(2 42)(3 43)(4 44)(5 45)(6 46)(7 47)(8 48)(9 49)(10 50)(11 51)(12 52)(13 53)(14 54)(15 55)(16 56)(17 57)(18 58)(19 59)(20 60)(21 61)(22 62)(23 63)(24 64)(25 65)(26 66)(27 67)(28 68)(29 69)(30 70)(31 71)(32 72)(33 73)(34 74)(35 75)(36 76)(37 77)(38 78)(39 79)(40 80)
(1 16 6 11)(2 17 7 12)(3 18 8 13)(4 19 9 14)(5 20 10 15)(21 31 26 36)(22 32 27 37)(23 33 28 38)(24 34 29 39)(25 35 30 40)(41 56 46 51)(42 57 47 52)(43 58 48 53)(44 59 49 54)(45 60 50 55)(61 71 66 76)(62 72 67 77)(63 73 68 78)(64 74 69 79)(65 75 70 80)
(1 66 6 61)(2 67 7 62)(3 68 8 63)(4 69 9 64)(5 70 10 65)(11 76 16 71)(12 77 17 72)(13 78 18 73)(14 79 19 74)(15 80 20 75)(21 41 26 46)(22 42 27 47)(23 43 28 48)(24 44 29 49)(25 45 30 50)(31 51 36 56)(32 52 37 57)(33 53 38 58)(34 54 39 59)(35 55 40 60)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)(61 62 63 64 65)(66 67 68 69 70)(71 72 73 74 75)(76 77 78 79 80)
(1 36 6 31)(2 38 10 34)(3 40 9 32)(4 37 8 35)(5 39 7 33)(11 26 16 21)(12 28 20 24)(13 30 19 22)(14 27 18 25)(15 29 17 23)(41 76 46 71)(42 78 50 74)(43 80 49 72)(44 77 48 75)(45 79 47 73)(51 66 56 61)(52 68 60 64)(53 70 59 62)(54 67 58 65)(55 69 57 63)

G:=sub<Sym(80)| (1,41)(2,42)(3,43)(4,44)(5,45)(6,46)(7,47)(8,48)(9,49)(10,50)(11,51)(12,52)(13,53)(14,54)(15,55)(16,56)(17,57)(18,58)(19,59)(20,60)(21,61)(22,62)(23,63)(24,64)(25,65)(26,66)(27,67)(28,68)(29,69)(30,70)(31,71)(32,72)(33,73)(34,74)(35,75)(36,76)(37,77)(38,78)(39,79)(40,80), (1,16,6,11)(2,17,7,12)(3,18,8,13)(4,19,9,14)(5,20,10,15)(21,31,26,36)(22,32,27,37)(23,33,28,38)(24,34,29,39)(25,35,30,40)(41,56,46,51)(42,57,47,52)(43,58,48,53)(44,59,49,54)(45,60,50,55)(61,71,66,76)(62,72,67,77)(63,73,68,78)(64,74,69,79)(65,75,70,80), (1,66,6,61)(2,67,7,62)(3,68,8,63)(4,69,9,64)(5,70,10,65)(11,76,16,71)(12,77,17,72)(13,78,18,73)(14,79,19,74)(15,80,20,75)(21,41,26,46)(22,42,27,47)(23,43,28,48)(24,44,29,49)(25,45,30,50)(31,51,36,56)(32,52,37,57)(33,53,38,58)(34,54,39,59)(35,55,40,60), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80), (1,36,6,31)(2,38,10,34)(3,40,9,32)(4,37,8,35)(5,39,7,33)(11,26,16,21)(12,28,20,24)(13,30,19,22)(14,27,18,25)(15,29,17,23)(41,76,46,71)(42,78,50,74)(43,80,49,72)(44,77,48,75)(45,79,47,73)(51,66,56,61)(52,68,60,64)(53,70,59,62)(54,67,58,65)(55,69,57,63)>;

G:=Group( (1,41)(2,42)(3,43)(4,44)(5,45)(6,46)(7,47)(8,48)(9,49)(10,50)(11,51)(12,52)(13,53)(14,54)(15,55)(16,56)(17,57)(18,58)(19,59)(20,60)(21,61)(22,62)(23,63)(24,64)(25,65)(26,66)(27,67)(28,68)(29,69)(30,70)(31,71)(32,72)(33,73)(34,74)(35,75)(36,76)(37,77)(38,78)(39,79)(40,80), (1,16,6,11)(2,17,7,12)(3,18,8,13)(4,19,9,14)(5,20,10,15)(21,31,26,36)(22,32,27,37)(23,33,28,38)(24,34,29,39)(25,35,30,40)(41,56,46,51)(42,57,47,52)(43,58,48,53)(44,59,49,54)(45,60,50,55)(61,71,66,76)(62,72,67,77)(63,73,68,78)(64,74,69,79)(65,75,70,80), (1,66,6,61)(2,67,7,62)(3,68,8,63)(4,69,9,64)(5,70,10,65)(11,76,16,71)(12,77,17,72)(13,78,18,73)(14,79,19,74)(15,80,20,75)(21,41,26,46)(22,42,27,47)(23,43,28,48)(24,44,29,49)(25,45,30,50)(31,51,36,56)(32,52,37,57)(33,53,38,58)(34,54,39,59)(35,55,40,60), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80), (1,36,6,31)(2,38,10,34)(3,40,9,32)(4,37,8,35)(5,39,7,33)(11,26,16,21)(12,28,20,24)(13,30,19,22)(14,27,18,25)(15,29,17,23)(41,76,46,71)(42,78,50,74)(43,80,49,72)(44,77,48,75)(45,79,47,73)(51,66,56,61)(52,68,60,64)(53,70,59,62)(54,67,58,65)(55,69,57,63) );

G=PermutationGroup([[(1,41),(2,42),(3,43),(4,44),(5,45),(6,46),(7,47),(8,48),(9,49),(10,50),(11,51),(12,52),(13,53),(14,54),(15,55),(16,56),(17,57),(18,58),(19,59),(20,60),(21,61),(22,62),(23,63),(24,64),(25,65),(26,66),(27,67),(28,68),(29,69),(30,70),(31,71),(32,72),(33,73),(34,74),(35,75),(36,76),(37,77),(38,78),(39,79),(40,80)], [(1,16,6,11),(2,17,7,12),(3,18,8,13),(4,19,9,14),(5,20,10,15),(21,31,26,36),(22,32,27,37),(23,33,28,38),(24,34,29,39),(25,35,30,40),(41,56,46,51),(42,57,47,52),(43,58,48,53),(44,59,49,54),(45,60,50,55),(61,71,66,76),(62,72,67,77),(63,73,68,78),(64,74,69,79),(65,75,70,80)], [(1,66,6,61),(2,67,7,62),(3,68,8,63),(4,69,9,64),(5,70,10,65),(11,76,16,71),(12,77,17,72),(13,78,18,73),(14,79,19,74),(15,80,20,75),(21,41,26,46),(22,42,27,47),(23,43,28,48),(24,44,29,49),(25,45,30,50),(31,51,36,56),(32,52,37,57),(33,53,38,58),(34,54,39,59),(35,55,40,60)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60),(61,62,63,64,65),(66,67,68,69,70),(71,72,73,74,75),(76,77,78,79,80)], [(1,36,6,31),(2,38,10,34),(3,40,9,32),(4,37,8,35),(5,39,7,33),(11,26,16,21),(12,28,20,24),(13,30,19,22),(14,27,18,25),(15,29,17,23),(41,76,46,71),(42,78,50,74),(43,80,49,72),(44,77,48,75),(45,79,47,73),(51,66,56,61),(52,68,60,64),(53,70,59,62),(54,67,58,65),(55,69,57,63)]])

50 conjugacy classes

class 1 2A2B2C2D2E2F2G4A···4F4G···4N4O···4AF 5 10A10B10C20A···20F
order122222224···44···44···4510101020···20
size111155552···25···510···1044448···8

50 irreducible representations

dim11111111224448
type+++++-+++-
imageC1C2C2C2C2C4C4C4Q8C4○D4F5C2×F5C2×F5Q8×F5
kernelC2×Q8×F5C2×C4×F5C2×C4⋊F5Q8×F5C2×Q8×D5C2×Dic10Q8×D5Q8×C10C2×F5D10C2×Q8C2×C4Q8C2
# reps13381682441342

Matrix representation of C2×Q8×F5 in GL6(𝔽41)

4000000
0400000
0040000
0004000
0000400
0000040
,
4020000
4010000
0040000
0004000
0000400
0000040
,
9230000
0320000
001000
000100
000010
000001
,
100000
010000
0000040
0010040
0001040
0000140
,
4000000
0400000
000010
001000
000001
000100

G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[40,40,0,0,0,0,2,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[9,0,0,0,0,0,23,32,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,40,40,40,40],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,1,0] >;

C2×Q8×F5 in GAP, Magma, Sage, TeX

C_2\times Q_8\times F_5
% in TeX

G:=Group("C2xQ8xF5");
// GroupNames label

G:=SmallGroup(320,1599);
// by ID

G=gap.SmallGroup(320,1599);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,112,184,297,136,6278,818]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^4=d^5=e^4=1,c^2=b^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c^-1=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^3>;
// generators/relations

׿
×
𝔽