direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C4○D4×F5, D10.18C24, (D4×F5)⋊5C2, D4⋊8(C2×F5), Q8⋊7(C2×F5), (Q8×F5)⋊5C2, C4○D20⋊5C4, D20⋊9(C2×C4), D4⋊2D5⋊10C4, Q8⋊2D5⋊10C4, Dic10⋊8(C2×C4), C4⋊F5.13C22, (C2×F5).7C23, C4.33(C22×F5), C2.18(C23×F5), C20.34(C22×C4), C10.17(C23×C4), (D4×D5).18C22, (C4×D5).57C23, D10.8(C22×C4), (C4×F5).21C22, (Q8×D5).16C22, C22⋊F5.4C22, C22.5(C22×F5), Dic5.49(C22×C4), (C22×F5).20C22, D10.C23⋊9C2, (C22×D5).153C23, C5⋊(C4×C4○D4), (C2×C4×F5)⋊6C2, (C2×C4)⋊9(C2×F5), (C2×C20)⋊6(C2×C4), (C5×C4○D4)⋊5C4, (C5×D4)⋊9(C2×C4), (C4×D5)⋊9(C2×C4), C5⋊D4⋊3(C2×C4), (C5×Q8)⋊8(C2×C4), D5.4(C2×C4○D4), (D5×C4○D4).11C2, (C2×Dic5)⋊19(C2×C4), (C2×C10).6(C22×C4), (C2×C4×D5).224C22, SmallGroup(320,1603)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C4○D4×F5
G = < a,b,c,d,e | a4=c2=d5=e4=1, b2=a2, ab=ba, ac=ca, ad=da, ae=ea, cbc=a2b, bd=db, be=eb, cd=dc, ce=ec, ede-1=d3 >
Subgroups: 1018 in 310 conjugacy classes, 142 normal (18 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C5, C2×C4, C2×C4, D4, D4, Q8, Q8, C23, D5, D5, C10, C10, C42, C22⋊C4, C4⋊C4, C22×C4, C2×D4, C2×Q8, C4○D4, C4○D4, Dic5, Dic5, C20, C20, F5, F5, D10, D10, D10, C2×C10, C2×C42, C42⋊C2, C4×D4, C4×Q8, C2×C4○D4, Dic10, C4×D5, C4×D5, D20, C2×Dic5, C5⋊D4, C2×C20, C5×D4, C5×Q8, C2×F5, C2×F5, C22×D5, C4×C4○D4, C4×F5, C4×F5, C4⋊F5, C22⋊F5, C2×C4×D5, C4○D20, D4×D5, D4⋊2D5, Q8×D5, Q8⋊2D5, C5×C4○D4, C22×F5, C2×C4×F5, D10.C23, D4×F5, Q8×F5, D5×C4○D4, C4○D4×F5
Quotients: C1, C2, C4, C22, C2×C4, C23, C22×C4, C4○D4, C24, F5, C23×C4, C2×C4○D4, C2×F5, C4×C4○D4, C22×F5, C23×F5, C4○D4×F5
(1 26 6 21)(2 27 7 22)(3 28 8 23)(4 29 9 24)(5 30 10 25)(11 36 16 31)(12 37 17 32)(13 38 18 33)(14 39 19 34)(15 40 20 35)
(1 26 6 21)(2 27 7 22)(3 28 8 23)(4 29 9 24)(5 30 10 25)(11 31 16 36)(12 32 17 37)(13 33 18 38)(14 34 19 39)(15 35 20 40)
(1 11)(2 12)(3 13)(4 14)(5 15)(6 16)(7 17)(8 18)(9 19)(10 20)(21 31)(22 32)(23 33)(24 34)(25 35)(26 36)(27 37)(28 38)(29 39)(30 40)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)
(1 6)(2 8 5 9)(3 10 4 7)(11 16)(12 18 15 19)(13 20 14 17)(21 26)(22 28 25 29)(23 30 24 27)(31 36)(32 38 35 39)(33 40 34 37)
G:=sub<Sym(40)| (1,26,6,21)(2,27,7,22)(3,28,8,23)(4,29,9,24)(5,30,10,25)(11,36,16,31)(12,37,17,32)(13,38,18,33)(14,39,19,34)(15,40,20,35), (1,26,6,21)(2,27,7,22)(3,28,8,23)(4,29,9,24)(5,30,10,25)(11,31,16,36)(12,32,17,37)(13,33,18,38)(14,34,19,39)(15,35,20,40), (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,17)(8,18)(9,19)(10,20)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40), (1,6)(2,8,5,9)(3,10,4,7)(11,16)(12,18,15,19)(13,20,14,17)(21,26)(22,28,25,29)(23,30,24,27)(31,36)(32,38,35,39)(33,40,34,37)>;
G:=Group( (1,26,6,21)(2,27,7,22)(3,28,8,23)(4,29,9,24)(5,30,10,25)(11,36,16,31)(12,37,17,32)(13,38,18,33)(14,39,19,34)(15,40,20,35), (1,26,6,21)(2,27,7,22)(3,28,8,23)(4,29,9,24)(5,30,10,25)(11,31,16,36)(12,32,17,37)(13,33,18,38)(14,34,19,39)(15,35,20,40), (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,17)(8,18)(9,19)(10,20)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40), (1,6)(2,8,5,9)(3,10,4,7)(11,16)(12,18,15,19)(13,20,14,17)(21,26)(22,28,25,29)(23,30,24,27)(31,36)(32,38,35,39)(33,40,34,37) );
G=PermutationGroup([[(1,26,6,21),(2,27,7,22),(3,28,8,23),(4,29,9,24),(5,30,10,25),(11,36,16,31),(12,37,17,32),(13,38,18,33),(14,39,19,34),(15,40,20,35)], [(1,26,6,21),(2,27,7,22),(3,28,8,23),(4,29,9,24),(5,30,10,25),(11,31,16,36),(12,32,17,37),(13,33,18,38),(14,34,19,39),(15,35,20,40)], [(1,11),(2,12),(3,13),(4,14),(5,15),(6,16),(7,17),(8,18),(9,19),(10,20),(21,31),(22,32),(23,33),(24,34),(25,35),(26,36),(27,37),(28,38),(29,39),(30,40)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40)], [(1,6),(2,8,5,9),(3,10,4,7),(11,16),(12,18,15,19),(13,20,14,17),(21,26),(22,28,25,29),(23,30,24,27),(31,36),(32,38,35,39),(33,40,34,37)]])
50 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 4A | 4B | 4C | 4D | 4E | 4F | ··· | 4O | 4P | ··· | 4AD | 5 | 10A | 10B | 10C | 10D | 20A | 20B | 20C | 20D | 20E |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 4 | ··· | 4 | 5 | 10 | 10 | 10 | 10 | 20 | 20 | 20 | 20 | 20 |
size | 1 | 1 | 2 | 2 | 2 | 5 | 5 | 10 | 10 | 10 | 1 | 1 | 2 | 2 | 2 | 5 | ··· | 5 | 10 | ··· | 10 | 4 | 4 | 8 | 8 | 8 | 4 | 4 | 8 | 8 | 8 |
50 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 4 | 4 | 4 | 4 | 8 |
type | + | + | + | + | + | + | + | + | + | + | ||||||
image | C1 | C2 | C2 | C2 | C2 | C2 | C4 | C4 | C4 | C4 | C4○D4 | F5 | C2×F5 | C2×F5 | C2×F5 | C4○D4×F5 |
kernel | C4○D4×F5 | C2×C4×F5 | D10.C23 | D4×F5 | Q8×F5 | D5×C4○D4 | C4○D20 | D4⋊2D5 | Q8⋊2D5 | C5×C4○D4 | F5 | C4○D4 | C2×C4 | D4 | Q8 | C1 |
# reps | 1 | 3 | 3 | 6 | 2 | 1 | 6 | 6 | 2 | 2 | 8 | 1 | 3 | 3 | 1 | 2 |
Matrix representation of C4○D4×F5 ►in GL6(𝔽41)
32 | 0 | 0 | 0 | 0 | 0 |
0 | 32 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 0 | 40 |
32 | 0 | 0 | 0 | 0 | 0 |
21 | 9 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
40 | 5 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 0 | 40 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 40 | 40 | 40 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
40 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 40 | 40 | 40 | 40 |
G:=sub<GL(6,GF(41))| [32,0,0,0,0,0,0,32,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[32,21,0,0,0,0,0,9,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[40,0,0,0,0,0,5,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,1,0,0,0,0,40,0,1,0,0,0,40,0,0,1,0,0,40,0,0,0],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,40,0,0,0,0,1,40,0,0,0,0,0,40,0,0,0,1,0,40] >;
C4○D4×F5 in GAP, Magma, Sage, TeX
C_4\circ D_4\times F_5
% in TeX
G:=Group("C4oD4xF5");
// GroupNames label
G:=SmallGroup(320,1603);
// by ID
G=gap.SmallGroup(320,1603);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,112,184,570,6278,818]);
// Polycyclic
G:=Group<a,b,c,d,e|a^4=c^2=d^5=e^4=1,b^2=a^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=a^2*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^3>;
// generators/relations