Extensions 1→N→G→Q→1 with N=C2×F5 and Q=D4

Direct product G=N×Q with N=C2×F5 and Q=D4
dρLabelID
C2×D4×F540C2xD4xF5320,1595

Semidirect products G=N:Q with N=C2×F5 and Q=D4
extensionφ:Q→Out NdρLabelID
(C2×F5)⋊1D4 = C2.(D4×F5)φ: D4/C4C2 ⊆ Out C2×F580(C2xF5):1D4320,1118
(C2×F5)⋊2D4 = (C2×F5)⋊D4φ: D4/C22C2 ⊆ Out C2×F540(C2xF5):2D4320,1117

Non-split extensions G=N.Q with N=C2×F5 and Q=D4
extensionφ:Q→Out NdρLabelID
(C2×F5).1D4 = C10.(C4×D4)φ: D4/C4C2 ⊆ Out C2×F580(C2xF5).1D4320,1038
(C2×F5).2D4 = C20⋊(C4⋊C4)φ: D4/C4C2 ⊆ Out C2×F580(C2xF5).2D4320,1050
(C2×F5).3D4 = D10⋊(C4⋊C4)φ: D4/C22C2 ⊆ Out C2×F540(C2xF5).3D4320,1037
(C2×F5).4D4 = C4⋊C45F5φ: D4/C22C2 ⊆ Out C2×F580(C2xF5).4D4320,1049
(C2×F5).5D4 = D40⋊C4φ: D4/C22C2 ⊆ Out C2×F5408+(C2xF5).5D4320,1069
(C2×F5).6D4 = SD16⋊F5φ: D4/C22C2 ⊆ Out C2×F5408(C2xF5).6D4320,1073
(C2×F5).7D4 = Dic20⋊C4φ: D4/C22C2 ⊆ Out C2×F5808-(C2xF5).7D4320,1077
(C2×F5).8D4 = C22⋊C4×F5φ: trivial image40(C2xF5).8D4320,1036
(C2×F5).9D4 = C4⋊C4×F5φ: trivial image80(C2xF5).9D4320,1048
(C2×F5).10D4 = D8×F5φ: trivial image408+(C2xF5).10D4320,1068
(C2×F5).11D4 = SD16×F5φ: trivial image408(C2xF5).11D4320,1072
(C2×F5).12D4 = Q16×F5φ: trivial image808-(C2xF5).12D4320,1076

׿
×
𝔽